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Abstract
Populations of the ground beetle Scaphinotus petersi are isolated in subalpine conifer forest habitats on 
mountain ranges or Sky Islands in southeastern Arizona. Previous work on this species has suggested these 
populations have been isolated since the last post-glacial maximum times as warming caused this cool 
adapted species to retreat to high elevations. To test this hypothesis, we inferred the phylogeny from mito-
chondrial DNA sequence data from several Arizona Sky Island populations of S. petersi and estimated the 
divergence time of the currently isolated populations. We found two major clades of S. petersi, an eastern 
clade and a western group. Our results indicated most mountain ranges form clades except the Huachucas, 
which are polyphyletic and the Santa Catalinas, which are paraphyletic. We estimated the Pinaleño popu-
lation is much older than the last glacial maximum, but the Huachuca and Pinal populations may have 
been fragmented from the Santa Catalina population since the post-glacial maximum times.
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Introduction

Carabidae (ground beetle family) is one of the larger families of insects with approxi-
mately 40,000 described species (Lorenz 2005). The snail-eating beetles of the genus 
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Scaphinotus belong to the carabid tribe Cychrini. Cychrines consist of about 150 spe-
cies in four genera and are restricted to the Northern Hemisphere; the Cychrini genus 
Scaphinotus, found only in North America, began its initial radiation about 35 million 
years ago (Osawa et al. 2004, Scudder 1900) into 55 species (Lorenz, 2005). Scaphino-
tus petersi is a large ground beetle confined exclusively to moist coniferous forests that 
occur in southern Arizona at elevations > 1800 m. Scaphinotus petersi is a specialist pred-
ator of land snails, using elongated and narrow mouthparts to penetrate and extract the 
soft parts of terrestrial snails (Digweed 1993, LaRochelle 1972). Scaphinotus petersi, like 
other Scaphinotus, is flightless, with reduced or absent flight wings under fused elytra, 
and thus a poor disperser. Six subspecies of S. petersi have been described (Ball 1966), 
and geographical variation among subspecies includes differences in size, head and neck 
characteristics, leg differences and color variation. All six S. petersi subspecies live only 
on mountains in the sub-Mogollon area of Arizona, a region known as the Sky Islands.

The Sky Islands (Heald 1951), also called the Madrean Archipelago, are a unique 
complex of mountain ranges and ecosystems in southeastern Arizona. At present, hot, 
dry, desert grasslands and desert scrub in the valleys (the sea between the Sky Islands) 
act as barriers to the movement of upland forest species such as S. petersi much as 
saltwater seas isolate flora and fauna on oceanic islands. As with oceanic islands, this 
separation of habitat limits genetic interchange between populations and creates en-
vironments with high evolutionary potential. The resulting Sky Island ecosystems, 
renowned for their biodiversity (Lomolino et al. 1989), support a high number of 
endemic species, including many threatened and endangered species, and are consid-
ered a biodiversity hot spot (Spector 2002). The Sky Islands are a natural laboratory in 
which to examine genetic differentiation and the evolutionary dynamics of vicariance. 
Mesic refuges, such as those in southwest mountains, may have been important centers 
of diversification during periods of dry climate for carabid beetles (Noonan 1992). To-
day, several Sky Island mountain ranges each contain a unique subspecies of S. petersi.

The goal of this study was to infer the biogeographic history of S. petersi in south-
eastern Arizona and investigate how the paleoclimatic oscillations of Quaternary affected 
the distribution of populations in the Sky Islands. We present a preliminary genealogy of 
mitochondrial DNA (mtDNA) sequences and use these data to address questions about 
population structure of this species and examine the potential role of the Pleistocene 
climate changes in the differentiation some of the Sky Island populations of S. petersi.

Methods

DNA sequence data

We collected DNA sequence data from 45 specimens of four of the six subspecies 
of S. petersi in five localities in four mountain ranges (Table 1, Fig. 1). We included 
three outgroup species from the tribe Cychrini. One species of a related genus 
Sphaeroderus, and two other distantly related Scaphinotus species. Outgroup choices 
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Table 1. Specimens, collection localities, and GenBank numbers included in this study.

Specimen Collection locality Specimen 
number

COI 
GenBank

ND1 
GenBank

Sphaeroderus lecontei MA: Worcester Co. Wachusett Reservior
71.6849°W, 42.4048°N
120m elev.

001 JN639333 JN641890

Scaphinotus crenatus CA: Kern Co., Silvia Rd.
37°29.789'N, 119°53.369'W

002 JN639334 JN641891

Scaphinotus sp. CA: Kern Co. Hwy 49A
37°22.806'N, 199°43.879'W

030 JN639335 JN641892

Scaphinotus petersi 
grahami

AZ:Graham Co., Pinaleño Mts., 
Columbine Corral Camp/Ash Creek
32.7065°N, 109.9131°W elev. 2904m

040 JN639336 JN641893

Scaphinotus petersi 
grahami

AZ:Graham Co., Pinaleño Mts., 
Ladybug Trail
32.6589°N, 109.8540°W elev. 2716m

041 JN639337 JN641894

Scaphinotus petersi 
grahami

AZ:Graham Co., Pinaleño Mts., 
Columbine Corral Camp/Ash Creek
32.7065°N, 109.9131°W elev. 2904m

075 JN639369 JN641926

Scaphinotus petersi 
grahami

AZ:Graham Co., Pinaleño Mts., 
Columbine Corral Camp/Ash Creek
32.7065°N, 109.9131°W elev. 2904m

076 JN639370 JN641927

Scaphinotus petersi 
grahami

AZ:Graham Co., Pinaleño Mts., 
Columbine Corral Camp/Ash Creek
32.7065°N, 109.9131°W elev. 2904m

077 JN639371 JN641928

Scaphinotus petersi 
grahami

AZ:Graham Co., Pinaleño Mts., 
Columbine Corral Camp/Ash Creek
32.7065°N, 109.9131°W elev. 2904m

078 JN639372 JN641929

Scaphinotus petersi 
grahami

AZ:Graham Co., Pinaleño Mts., 
Columbine Corral Camp/Ash Creek
32.7065°N, 109.9131°W elev. 2904m

079 JN639373 JN641930

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

044 JN639340 JN641897

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

045 JN639341 JN641898

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

046 JN639342 JN641899

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

047 JN639343 JN641900

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

048 JN639344 JN641901

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

049 JN639345 JN641902
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Specimen Collection locality Specimen 
number

COI 
GenBank

ND1 
GenBank

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

050 JN639346 JN641903

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

051 JN639347 JN641904

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

052 JN639348 JN641947

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

073 JN639367 JN641924

Scaphinotus petersi 
biedermani

AZ: Cochise Co., Huachuca Mts., Carr 
Canyon Trail
31.4272°N, 110.3069°W elev. 2186m

074 JN639368 JN641925

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., 
Marshall Gulch
32.4279°N, 110.7052°W elev. 2432m

042 JN639338 JN641895

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., 
Marshall Gulch
32.4279°N, 110.7052°W elev. 2432m

043 JN639339 JN641896

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

053 JN639348 JN641905

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

054 JN639349 JN641906

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

055 JN639350 JN641907

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

056 JN639351 JN641908

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

058 JN639352 JN641909

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

059 JN639353 JN641910

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

060 JN639354 JN641911

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

061 JN639355 JN641912

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

062 JN639356 JN641913
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Specimen Collection locality Specimen 
number

COI 
GenBank

ND1 
GenBank

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

063 JN639357 JN641914

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

064 JN639358 JN641915

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

065 JN639359 JN641916

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

066 JN639360 JN641917

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

067 JN639361 JN641918

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

068 JN639362 JN641919

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

069 JN639363 JN641920

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

070 JN639364 JN641921

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

071 JN639365 JN641922

Scaphinotus petersi 
catalinae

AZ: Pima Co., Santa Catalina Mts., Ski 
Valley
32.4507°N, 110.7789°W elev. 2499m

072 JN639366 JN641923

Scaphinotus petersi 
petersi

AZ: Gila Co., Pinal Mts., Icehouse 
Canyon FTrail 198
33. 2925°N, 110.8311°W elev. 2302.5m

081 JN639375 JN641932

Scaphinotus petersi 
petersi

AZ: Gila Co., Pinal Mts., Icehouse 
Canyon FTrail 198
33. 2925°N, 110.8311°W elev. 2302.5m

082 JN639376 JN641933

Scaphinotus petersi 
petersi

AZ: Gila Co., Pinal Mts., Icehouse 
Canyon FTrail 198
33. 2925°N, 110.8311°W elev. 2302.5m

083 JN639377 JN641934

Scaphinotus petersi 
petersi

AZ: Gila Co., Pinal Mts., Icehouse 
Canyon FTrail 198
33. 2925°N, 110.8311°W elev. 2302.5m

084 JN639378 JN641935

Scaphinotus petersi 
petersi

AZ: Gila Co., Pinal Mts., Icehouse 
Canyon FTrail 198
33. 2925°N, 110.8311°W elev. 2302.5m

085 JN639379 JN641936

Scaphinotus petersi 
petersi

AZ: Gila Co., Pinal Mts., Icehouse 
Canyon FTrail 198
33. 2925°N, 110.8311°W elev. 2302.5m

086 JN639333 JN641890
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Figure 1. Study location A S. petersi distribution is circled area. Habitat above 1830m is shown in black 
and between 1500 and 1830m is shown in grey B Shaded relief map of study area. Black dots denote 
sampling localities of S. petersi used in this study (see Table 1) abbreviated as follows: P, Pinal Mountains; 
SC, Santa Catalina Mountains; PN, Pinaleño Mountains; and H, Huachuca Mountains.  Figure courtesy 
of Sara Mitchell.

were limited by material available for DNA analysis. Genomic DNA was extracted 
following the protocol outlined in Maddison et al. 1999. PCR reactions were per-
formed using a modification of the procedure described in Maddison et al. 1999. 
Reactions used a 53–56°C annealing temperature. This procedure was used to am-
plify approximately 1200bp of ND1 and adjacent RNA genes, and either a 500 bp 
portion or 1400 bps of COI. Macrogen Inc. (Korea) carried out DNA sequencing 
using an Applied Biosystems ABI 3730 48-capillary DNA analyzer with Big Dye 
Terminator Technology according to the manufacturer’s protocols (Applied Biosys-
tems). The primers used for PCR amplification and DNA sequencing is given in 
Table 2. DNA sequence data was visualized using the SEQUENCHER 3.0 software 
(Gene Codes Corp.). Sequences were easily aligned by eye using MACCLADE 4.06 
(Maddison and Maddison 2005). Data matrices are available from the correspond-
ing author. Voucher specimens are in KAO insect collection at the College of the 
Holy Cross, Worcester, MA.

Phylogenetic reconstruction

Phylogeographic patterns were examined by inferring phylogenetic relationships from 
mitochondrial sequence data from all specimens collected. The combined COI and 
ND1 data set (2678 characters) was partitioned in five unlinked subsets (COI pos 1 
and 2, COI pos 3, ND1 pos 1 and 2, ND1 pos 3, mtRNA). Maximum likelihood 
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Table 2. Primers used for DNA amplification (PCR) and sequencing for the ND1 and COI mito-
chodrial genes.

Gene Primer Direction Sequence 5’ to 3’
Cytochrome 
Oxidase I (COI)

SK 
(modification 
of TY-J-1460 
(Simon et al. 
1994))

Forward CGCTCTAGAACTAGTGGATCAANAAYCAYAARGAYATYG

Pat (L2-N-3014 
(Simon et al. 
1994))

Reverse TCCAATGCACTAATCTGCCATATTA

Ron (C1-J-
1751 (Simon et 
al. 1994))

Forward GGATCACCTGATATAGCATTCCC

Nancy (C1-N-
2191 (Simon et 
al. 1994))

Reverse CCCGGTAAAATTAAAATATAAACTTC

NADH1 
dehydrogenase 
(ND1)

ND1F Forward ACATGAATTGGAGCTCGACCAGT
16sR (LR-N-
12866 (Simon 
et al. 1994))

Reverse ACATGATCTGAGTTCAAACCGG

models were selected using MODELTEST 3.7 (Posada 2005) and likelihood searches 
were completed using GARLI-PART 0.97 (Zwickl 2010) using a GTR+I+G model of 
evolution for each subset. Other search settings were default. The searches employed a 
heuristic search strategy and were repeated 20 times starting from random trees keep-
ing only the tree with the best likelihood score. Support for the relationships found 
in these searches was evaluated by 200 replicate bootstrap analyses with two addition 
sequences per replicate.

Bayesian analyses were completed in MRBAYES 3.12 (Ronquist and Huelsenbeck 
2003) using four runs of 10 million generations each. The same partition strategy and 
model of evolution as above was used. Each run used four separate chains, sampling 
every 1,000 generations. Independent runs were combined using LOGCOMBIN-
ER1.5.4 (Rambaut and Drummond 2010). For each analysis, the trees in a burn-in 
period were excluded (the first 25% of the runs), and the majority-rule consensus tree 
of the remaining trees was calculated by PAUP* (Swofford 2002) to determine Bayes-
ian Posterior Probabilities of clades. The average standard deviation of split frequencies 
was below 0.01 and all parameters appeared to have reached stationarity.

Age estimates of populations

We inferred divergence dates of S. petersi populations using a Bayesian relaxed clock 
uncorrelated lognormal method in BEAST (Drummond and Rambaut 2007) for all 
data combined. We partitioned the combined data into the same five subsets as used 
in the phylogenetic analyses. We chose unlinked GTR+I+G models with four gamma 
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categories, a coalescent extended Bayesian skyline plot for the tree prior, and an uncor-
related lognormal relaxed clock model of rate variation estimated for each partition with 
a normal distribution and a mean for each gene based on the rates for each gene from 
Pons et al. (2010). We constrained all S. petersi to be monophyletic because it was clearly 
monophyletic in the maximum likelihood analyses and to simplify the BEAST analyses. 
After an initial period of fine-tuning the operators, two separate MCMC analyses were 
run for 20 million generations with parameters sampled every 1000 generations. Inde-
pendent runs were combined using LOGCOMBINER1.5.4 (Rambaut and Drummond 
2010), and the first 30% of the generations from each run was discarded as burnin. 
Convergence of the chains was checked using TRACER 1.4 (Rambaut and Drummond 
2007). The searches achieved adequate mixing as assessed by the high effective sampling 
size (ESS) values for all parameters of 100 or greater. Node ages and upper and lower 
bounds of the 95% highest posterior density interval for divergence times was calculated 
using TreeAnnotator 1.5.4 and visualized using FIGTREE 1.3.1 (Rambaut 2010).

Results

Phylogenetic analyses

Both maximum likelihood and Bayesian analyses of mtDNA found similar topologies. 
The best maximum likelihood tree (Fig. 2) had a log-likelihood score of -6033.6277, 
and the Bayesian analysis converged on a set of trees with a mean log-likelihood score 
of -5797.5. Within a monophyletic S. petersi, two well-supported major clades were 
identified, corresponding to geographic relationships between collection localities 
(Fig. 2) and spatially structured genetic variation at deep and shallow scales. A clade of 
S. p. grahami from the Pinaleño Mountains was clearly phylogenetically distinct from 
a western clade of S. petersi from the Santa Catalina, Huachuca, and Pinal Moun-
tains. The Santa Catalina population (S. p. catalinae) was paraphyletic with respect to 
a clade of S. p. petersi from the Pinal Mountains and S. p. biedermani from the Hua-
chuca Mountains. The S. p. biedermani population did not appear to be monophyletic 
with one specimen grouping with members of S. p. catalinae from the Santa Catalina 
Mountains (Fig. 2). The overall phylogenetic tree topology estimate from GARLI and 
MRBAYES was similar to the BEAST analyses (Fig. 3).

Estimates of divergence times

Divergence time estimates for mtDNA lineages from BEAST reveal a deep and com-
plex history of diversification (Fig. 3 and Table 3). The S. petersi grahami population in 
the Pinaleño Mountains diverged from the western populations in this study approxi-
mately 95,200 years ago. The S. p. petersi population in the Pinal Mountains diverged 
from the Santa Catalina Mountain population approximately 11,000 years ago. More 
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Figure 2. Maximum likelihood tree of S. petersi populations from combined COI and ND1 data. Out-
groups are removed to show greater detail. Specimen numbers are removed, but the mountain range from 
which they were collected is indicated. Support for branches is indicated by Bayesian Posterior Probabil-
ity/Maximum Likelihood bootstrap values. Scale bar units are substitutions per site.

than one dispersal event from the Santa Catalinas to the Huachucas may have occurred 
about 8,900 years ago and also 7,400 years ago (Fig. 3 and Table 3).

Discussion

Phylogeography and genetic structure of Scaphinotus petersi

Our phylogenetic analyses indicated geographic and genetic structure within the S. pe-
tersi, and most clades corresponded to isolated mountain ranges. There was strong sup-
port for two major clades in this species; an eastern clade of S. p. grahami from the Pina-
leño Mountains and a western clade of S. p. petersi, S. p. catalinae, and S. p. biedermani 
from the Pinal Mountains, Santa Catalina Mountains, and Huachuca Mountains, re-
spectively. While it appears the Pinaleño clade is reproductively isolated from the rest of 
S. petersi, caution must be taken in interpreting genealogy patterns from mitochondrial 
data only, as it is a single locus and represents the maternal lineage only. The phylo-
genetic analyses suggested the Santa Catalina population is paraphyletic with respect 
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Figure 3. Phylogeny of S. petersi dated using a Bayesian relaxed molecular clock in BEAST. Outgroups 
are removed to show greater detail. Specimen numbers are removed, but the mountain range from which 
they were collected is indicated. Branches are proportional to time in thousands of years. Shading indi-
cates the two most recent glacial maxima. 95% confidence intervals for the ages of major clades in the 
tree are indicated with blue bars. The capital letters indicate population fragmentation between mountain 
ranges (see Table 3).

to the Pinal and Huachuca populations that were derived from independent dispersal 
events from the Santa Catalinas. The history of the Huachuca population shows two 
relatively recent dispersal events from the Santa Catalinas to the Huachucas indicating 
there may have been suitable habitat in the past for low elevation Santa Catalina popula-
tions to migrate to the Huachucas. Based on morphological data, Ball (1966) suggested 
the Pinaleño population is fairly derived and experienced the earliest relative divergence 
from other S. petersi, and that later, lower elevation Santa Catalina populations may 
have given rise to S. p. petersi and S. p. biedermani based on the pronotum and body 
size. Trees inferred from molecular data were in agreement with this early hypothesis.

In this study we sampled only four of the six subspecies of S. petersi, and only a few 
of the known populations of S. p. petersi, S. p. biedermani, and S. p. grahami. Future 
work will include the additional subspecies and populations for a fuller picture of S. 
petersi evolution and biogeography. We predict, with the inclusion of these samples, the 
phylogeography of S. petersi subspecies will follow, in large part, Ball’s (1966) hypotheses 
of relationships based on morphological characteristics. Ball (1966) suggested the S. p. 
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grahami from the Pinaleño Mountains shared traits with S. p. kathleenae from the Santa 
Rita Mountains and S. p. corvus from the Chiricahua Mountains. Thus we would pre-
dict these three subspecies form a clade even though the Santa Rita Mountains are more 
geographically close to the Huachuca Mountains where S. p. biedermani are found. 
Based on morphological similarity, Ball (1966) hypothesized S. petersi in the Rincon 
Mountains are closely related to those in the Huachuca Mountains, however, based on 
the amount of dispersal from the Santa Catalina Mountains to neighboring mountain 
ranges and the amount of morphological variation Ball (1966) found there, we predict 
the population in the Rincon Mountains may be more closely related to a lineage of S. 
p. catalinae instead of other S. p. biedermani found in the Huachuca Mountains.

The distribution of genetic diversity in S. petersi is structured across southeastern 
Arizona, indicating extrinsic barriers to gene flow are probably responsible for phyloge-
ographic structure. It appears that a historical corridor of shared, linked habitat existed 
along a north – south ridge in the Western clade of S. petersi enabling dispersal from 
the Santa Catalinas to the Huachuca and Pinal Mountains. This north – south ridge 
of connectivity pattern in biogeography has been seen in other Sky Island arthropods 
(Maddison and McMahon 2000, Smith and Farrell 2005a). Future phylogeographic 
studies will include additional populations of S. petersi from Eastern and Western clad-
es as well as closely related species in Arizona and New Mexico to further investigate 
the role geographic barriers have played in population isolation.

Divergence time of isolated populations

The divergence time estimates suggested the Pinaleño population (S. p. grahami) is 
considerably older than the end of the last glacial period, perhaps indicating that this 
population was isolated during previous interglacial events in the Pliocene and per-
sisted during Pleistocene glaciations. The western populations of S. p. petersi from the 
Pinals and S. p. biedermani from the Huachucas have more recent divergence times, 
indicating that these areas were more recently isolated, perhaps since the end of the 
last glacial maximum (LGM). It is important to note that the error bars for the time 
estimates of nodes are large, making it difficult to pinpoint with certainty divergence 
dates and the impact particular changes in climate have had on population isolation. 
Additional loci could reduce variation in estimated time to coalescence.

Table 3. Ages of selected nodes estimated from molecular data in Scaphinotus petersi phylogeny from 
BEAST analysis. Letters correspond to nodes in Fig. 3.

Node Split between populations Age in years 95% C.I. age in years
A Pinaleño vs western populations 95,200 8,000–225,000
B Huachuca vs Catalina 1 7,400 1,200–18,500
C Huachuca vs Catalina 2 8,900 1,500–21,300
D Catalina vs Pinal 11,200 1,800–28,200
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Ball (1966) suggested that all subspecies of S. petersi could have evolved within the 
time span of the classical Wisconsin stage and Holocene. He hypothesized that during 
the pluvial stages of the Pleistocene, the montane coniferous forests occurred in the 
lowlands, probably along watercourses, and S. petersi dispersal took place. In subse-
quent pluvial stages, range expansion of populations could have led to contact between 
previously isolated lineages. The results from our current molecular study are in con-
cordance with this original hypothesis. During interglacial periods, contact between 
neighboring lineages of S. petersi probably occurred in low elevation populations. 
These same populations were also probably the first to be extirpated during elevational 
shifts in habitat caused by post-glacial climate warming, leaving no signature of gene 
flow after the loss of these contact populations. Thus lineage boundaries like those 
between S. p. grahami in the Pinaleños and S. p. catalinae in the Santa Catalinas were 
maintained during glacial age population expansion and interglacial range retraction.

Conclusions

Several studies have focused on the biogeography of species on the Arizona Sky Island 
region including plants, arthropods, birds, lizards, and mammals (Downie 2004, Lin-
hart and Permoli 1994, McCord 1994, Sullivan 1994, Slentz et al. 1999, Barber 1999a, 
b, Maddison and McMahon 2000, Masta 2000, Boyd 2002, Smith and Farrell 2005a, 
b, McCormack et al. 2008, Tennessen and Zamudio 2008). Most of these studies have 
shown significant morphological variation among populations and/or genetic struc-
ture in species on the Sky Islands. However, a biogeographic study of a galling insect 
(Downie 2004) and a study of squirrels (Lamb et al. 1997) failed to detect evidence for 
genetic divergence. Past climate changes have influenced the evolution of Sky Island 
species in very different ways. Phylogeographic studies in other arthropods such as spi-
ders (Masta 2000), and beetles (Smith and Farrell 2005a, b) have tested hypotheses of 
divergence times among isolated populations. These studies suggest ancient divergence 
times among populations (more than one My), suggesting a much earlier vicariance 
event than the proposed post-LGM habitat fragmentation. Other studies of vertebrates 
(Sullivan 1994, Holycross and Douglas 2007, McCormack et al. 2008) suggest a more 
recent post-LGM effect on population genetic structure. In addition, concordant bio-
geographic patterns can be seen in populations of organisms distributed on the Sky Is-
lands. Masta (2000), Boyd (2002), and McCormack et al. (2008) all reported a North-
South mountain range relationship among populations with an East-West gap.

Both recent and more ancient global climate changes could be the causal mecha-
nisms underlying the history of habitat fragmentation in S. petersi. Our results suggest 
S. petersi populations experienced a significant fragmentation into distinct eastern and 
western populations separated by the San Pedro River much earlier than the last gla-
cial period. More recently, probably after the LGM, the western populations became 
more fragmented in the Pinal, Santa Catalina, and Huachuca Mountains. Future work 
will include more populations of S. petersi and closely related species from additional 
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mountain ranges, adding missing lineages. Additional nuclear genes will be included to 
provide a broader picture of genetic structure and a better estimate of divergence times. 
These efforts will help develop a general model for understanding the phylogeographic 
effects of climate change in Sky Island organisms.
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