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Abstract
Pampus argenteus is a broadly exploited pelagic fish species, commonly misidentified as Pampus echi-
nogaster. Genetic variation and population structure in Pampus argenteus was studied based on seven 
microsatellite loci. The observed high average allele number, heterozygosity values, and polymorphism 
information content of P. argenteus suggested high genetic diversity. No population genetic differentia-
tion was detected based on the results of pairwise Fst, three-dimensional factorial correspondence analysis 
(3D-FCA) and STRUCTURE analysis, which implied continuous gene flow. Wilcoxon signed rank tests 
did not indicate significant heterozygosity excess, and recent genetic bottleneck events were not detected. 
Coupled with previous mitochondrial DNA results, the findings presented here indicate that high gene 
flow characterizes the current phylogeographic pattern of the species.
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Introduction

Species of the genus Pampus Bonaparte, 1834, are mainly distributed in the Indo-West 
Pacific Ocean and have a rich landing yield in Kuwait, Iran, India, Malaysia, Thailand, 
China, Korea and Japan (Jia et al. 2004; Divya et al. 2017). Among these species, P. 
argenteus (Euphrasén, 1788) is a broadly exploited pelagic species that has a high eco-
nomic value because of its highly appreciated taste. Although all species of Pampus are 
important economical species, the morphological similarity among species of Pampus 
has resulted in considerable confusion in species-level identification. Pampus argenteus 
is the most widely distributed species of the genus, and it is usually identified as P. echi-
nogaster (Basilewsky, 1855) because of the morphological similarities (Li et al. 2013, 
2017a). This is mainly a consequence of the absence of critical diagnostic morphologi-
cal characteristics in the description by Euphrasén (1788), based on only one specimen. 
Li et al. (2013) collected samples of P. argenteus from Kuwait, Pakistan, and China and 
provided updated and improved morphological diagnosis and DNA barcode data. Li et 
al. (2017a) proposed diagnostic characteristics of P. echinogaster, which is significantly 
different from P. argenteus. Therefore, we speculate that P. argenteus is a warm-water 
species that is widely distributed south of the Taiwan Strait and across Indonesia to the 
Persian Gulf (Yamada et al. 2009; Li et al. 2013). Pampus punctatissimus (Temminck & 
Schlegel, 1845) was regarded as a synonym of P. argenteus by some ichthyologists (Bleek-
er 1852; Haedrich 1984), while a few researchers recognized differences between these 
species and provided a redescription of P. punctatissimus with a detailed morphological 
comparison with P. argenteus (Liu and Li 1998; Yamada et al. 2009; Nakabo 2013).

Pampus argenteus is a multiple batch spawner with indeterminate fecundity, and 
spawning starts in mid-May and continues until early October. Transformation from 
the larval to juvenile stage occurs at 40 days after hatching (Almatar et al. 2000). The 
eggs, larvae, and adults of this species are all pelagic. Although numerous investigations 
have been performed on P. argenteus (Meng et al. 2012; Peng et al. 2010a, 2010b; Zhao 
et al. 2010, 2011; Wu et al. 2012), many reports could actually be for P. echinogaster. 
Studies on P. argenteus mainly focus on its biology (Kuronuma and Abe 1972), repro-
ductive development (Almatar et al. 2004), and resource investigations (Morgan 1985; 
Pillai and Menon 2000; Narges et al. 2011; Hashemi et al. 2012; Siyal et al. 2013). 
To date, few population genetic analyses have been conducted with reliable species 
identification for this species. Although some reports have described P. argenteus from 
the Atlantic-eastern Pacific (Fowler 1938; Davis and Wheeler 1985; Dulčić et al. 2004; 
Piper 2010; Sami et al. 2014), far from its center of distribution (the western Pacific 
and Indian Oceans), such identifications should be analyzed further.

Microsatellites (simple sequence repeats, SSRs) are tandemly repeated motifs of 
1–6 bases characterized by a high degree of length polymorphism (Zane et al. 2002), 
and they are sensitive indicators of population genetic structure (Cheng et al. 2015; 
Song et al. 2016; Stepien et al. 2017). In previous studies, we evaluated the phylogeo-
graphical structure of P. argenteus by mitochondrial DNA markers, and two lineages 
were obtained (Li et al. 2017b). To further examine the genetic variation and popula-
tion structure of P. argenteus, seven microsatellite loci were employed in this study, and 
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we aim to infer the relative role of biological characteristics and environmental factors 
involved in shaping the contemporary population genetic structure of this species by 
combining the results of mitochondrial DNA.

Materials and methods

Sample collection

A total of 119 specimens of P. argenteus was collected from the coastal waters of Kuwait, 
Pakistan, and China from 2010 until 2014 (Figure 1, Table 1). All individuals were 
identified based on morphological characteristics according to Yamada et al. (2009) 
and Li et al. (2013), and dorsal muscle tissue was excised and preserved in 95% alcohol.

DNA extraction, amplification and sequencing

Genomic DNA was isolated from muscle tissue by proteinase K digestion and extracted 
using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA). Seven microsatel-
lite loci developed by Yang et al. (2006) were used in this study (Table 1). Tailed PCR 
was used to produce fluorescently labeled DNA fragments (Boutin-Ganache et al. 2001). 
M13R was added to the 5' end of one primer in each pair. An M13 reverse primer that 
is fluorescently labeled (FAM, HEX, and TAMRA) was included in the PCR, resulting 
in a labeled product for detection. All loci were conducted separately in a 25 μL reaction 
mixture containing 17.25 μL of ultrapure water, 2.5 μL of 10×PCR buffer (including 
MgCl2), 2 μL of dNTPs, 1 μL of fluorescently labeled M13R primer and locus specific 
primer without tail, 1 μL of locus specific primer with M13 reverse tail, 0.25 μL of Taq 
polymerase, and 1 μL of genomic DNA (10 ng). All loci were initially screened using the 
following PCR protocol: 5 min at 94 °C; 35 cycles of 45 s at 94 °C, 45 s at 50~58 °C, and 
45 s at 72 °C; and a final step of 15 min at 72 °C. The reactions were then exposed to 72 
°C for 45 min and held at 4 °C until further analysis. PCR products were diluted 20 fold 
with ultrapure Milli-Q water before being further diluted (1 in 5) in formamide contain-
ing the LIZ-500 size standard. The samples were separated by capillary gel-electrophoresis 
on an ABI 3730xl automated sequencer (Applied Biosystems). To score the consistency of 
microsatellite fragments, nearly 20% of PCR products were restored for replication (Wil-
liams et al. 2015). Microsatellite loci genotyping from six populations were determined in 
GENEMARKER version 2.2.0 software (SoftGenetics, State College, PA, USA).

Data analysis

The number of alleles (NA), observed heterozygosity (HO) and expected heterozygosity 
(HE) were estimated using POPGENE 1.32 (Yeh et al. 1999). The polymorphism in-
formation content (PIC) was calculated using the Microsoft Excel Microsatellite Toolkit 
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Figure 1. Locations (black circle) for sample collection of P. argenteus.

(Botstein et al. 1980; Raymond and Rousset 1995). GENEPOP 3.4 was used to test devi-
ations from the Hardy–Weinberg equilibrium (HWE) and the linkage disequilibrium of 
each locus (Raymond and Rousset 1995). The presence of null alleles and potential scor-
ing errors were addressed using MICRO-CHECKER 2.2.3 (Van Oosterhout et al. 2004).

FSTAT 2.9.3 (Goudent 2001) was used to calculate the allelic richness (RS) value 
and assess the Fst values. The 3D-FCA (three-dimensional factorial correspondence 
analysis) was performed in Genetix version 4.05 (Belkir et al. 2004) by making no a 
priori assumptions about the population groupings. The (δμ)2 genetic distance was 
obtained by POPULATIONS 1.2 (Lespinet et al. 2002), and the UPGMA tree was 
drawn by Treeview (Page 1996).

The possibility of a cryptic population structure of P. argenteus was checked using 
STRUCTURE (Pritchard et al. 2000). Population groups were simulated from K=1 to 
6, with each K run 10 independent times. Possible mixed ancestry and correlated allele 
frequencies were assumed, and 1,000,000 Markov chain Monte Carlo (MCMC) steps 
were used, with the first 100,000 steps discarded as burn-in. To estimate the most like-
ly number of clusters (K), an ad hoc approach (Pritchard et al. 2000) was performed by 
obtaining the mean posterior probability of the data ΔK and analyzing the dataset for 
K=2, where the value did not increase, peak or plateau, as expected (Li and Liu 2018).

The Bottleneck 1.2.02 program (Piry et al. 1999) was implemented to detect 
evidence of recent bottleneck events under three mutation models, the infinite allele 
model (IAM), stepwise mutation model (SMM) and two-phase mutation model 
(TPM), where 95% single-step mutations and 5% multiple steps mutations with 1000 
simulation iterations were set as recommended (Zeng et al. 2012). We also provide a 
graphical descriptor of the shape about the allele frequency distribution (mode-shift 
indicator) that differentiates bottlenecked and stable populations (Luikart et al. 1998).
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Table 1. Summary statistics for the variability seven polymorphic microsatellite loci in six P. argenteus 
populations.

Location Number of 
individuals

Date Locus Average
Parameters Par 03 Par 08 Par 20 Par 05 Par 12 Par 18 Par 17

Sonmiani 
Bay (SO)

21 2010.12 A 19 12 10 10 15 10 13 12.71 
RS 13.360 10.000 6.041 5.478 9.412 5.634 10.618 8.649 
HO 0.429 0.750 0.810 0.476 0.600 0.600 0.789 0.636 
HE 0.948 0.923 0.855 0.837 0.917 0.844 0.930 0.893 
PIC 0.920 0.892 0.815 0.798 0.885 0.800 0.898 0.858

Ormara 
(OR)

28 2010.12 A 18 15 12 15 16 15 16 15.29 
RS 11.130 7.396 8.522 10.453 10.721 7.649 10.962 9.548 
HO 0.333 0.679 0.786 0.857 0.889 0.464 0.778 0.684 
HE 0.927 0.881 0.899 0.921 0.924 0.885 0.926 0.909 
PIC 0.904 0.852 0.872 0.897 0.899 0.856 0.902 0.883

Pasni (PS) 12 2010.12 A 11 9 8 10 14 9 13 10.57 
RS 9.000 5.647 5.647 6.400 12.522 6.698 8.471 7.769 
HO 0.250 0.667 1.000 0.750 0.833 0.333 0.667 0.643 
HE 0.928 0.859 0.859 0.880 0.960 0.888 0.920 0.899 
PIC 0.879 0.805 0.800 0.828 0.914 0.833 0.871 0.847

Kuwait 
(KW)

23 2011.09 A 20 10 11 13 14 15 13 13.71 
RS 13.444 3.421 6.782 6.541 9.584 8.015 8.015 7.972 
HO 0.727 0.455 0.957 0.636 0.773 0.478 0.565 0.656 
HE 0.947 0.724 0.871 0.867 0.916 0.895 0.895 0.874 
PIC 0.921 0.685 0.838 0.834 0.887 0.864 0.864 0.842

Taiwan 
(TW)

11 2012.09 A 14 10 7 11 8 9 11 10.00 
RS 12.500 5.500 4.172 9.680 7.118 7.333 7.118 7.632 
HO 0.500 0.727 0.636 0.727 0.455 0.545 0.545 0.591 
HE 0.968 0.857 0.797 0.939 0.900 0.905 0.900 0.895 
PIC 0.914 0.798 0.732 0.887 0.843 0.848 0.845 0.838

Xiamen 
(XM)

24 2014.04 A 20 16 13 11 16 11 15 14.57 
RS 15.781 11.755 8.229 6.227 8.417 5.409 9.600 9.345 
HO 0.417 0.875 0.750 0.708 0.682 0.667 0.708 0.687 
HE 0.957 0.934 0.897 0.857 0.902 0.832 0.915 0.899 
PIC 0.933 0.909 0.868 0.820 0.872 0.793 0.887 0.869

Abbreviations: A: allelic number, RS: allelic richness, HO: observed heterozygosity, HE: expected heterozygosity, 
PIC: polymorphism information content.

Results

A total of 150 alleles were detected by seven microsatellite loci for six populations, with 
a range of 14 (Par 20) to 31 (Par 03) (Table 1). The NA, Ho, HE, and PIC of P. argenteus 
are shown in Table 1. All the PIC values were greater than 0.5, which suggested the 
high genetic diversity of this species (PIC>0.5) (Table 1). Two microsatellite loci (Par 
03 and Par 05) showed deviations from the Hardy-Weinberg equilibrium in all six 
populations, and null alleles for these loci were also detected for these two loci. Linkage 
disequilibrium was not detected between pairs of loci for all populations.

The values of pairwise Fst showed low genetic differentiation among P. argenteus 
populations ranging from 0.001 to 0.026. Most P-values were not significant after 
sequential Bonferroni procedures except those between Kuwait (KW) and the other 
populations (Xiamen and Sonmiani Bay) (Table 2). The (δμ)2 genetic distance was 
obtained according to the allele frequency by POPULATION software, and the 
UPGMA tree was constructed by this method (Table 2). The topology of the UP-
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Table 2. Pairwise Fst (below diagonal) and (δμ)2 genetic distance (above diagonal) among P. argenteus 
populations.

SO OR PS KW TW XM
SO 1.873 1.026 1.267 1.974 0.815
OR 0.005 1.617 1.064 1.530 2.487
PS 0.002 -0.002 0.909 0.505 0.463
KW 0.026 * 0.019 0.018 1.301 1.980
TW -0.003 0.003 0.001 0.029 1.029
XM 0.004 0.006 0.001 0.022 * 0.010

*indicate P<0.05. Abbreviations:  SO: Sonmiani Bay, OR: Ormara, PS: Pasni, KW: Kuwait, TW: Taiwan, XM: Xiamen.

Figure 2. The UPGMA tree based on (δμ)2 genetic distance of six P. argenteus populations. Abbreviations: 
SO: Sonmiani Bay, OR: Ormara, PS: Pasni, KW: Kuwait, TW: Taiwan, XM: Xiamen.

GMA tree showed that P. argenteus populations from China, Pakistan and Kuwait 
coastal waters clustered together and did not relate to their geographical distribu-
tions (Figure 2).

According to the results of the 3D-FCA, the first, second and third principal com-
ponents can explain 25.91%, 23.08%, and 17.92% of the overall variation, respec-
tively (Figure 3). Individuals from population Kuwait (KW) and Taiwan (TW) showed 
a rather distant genetic relationship with the other four populations.

The Bayesian cluster analysis showed that the model with K=2 resulted in the high-
est ΔK value (Figure 4). A total of 70.8% of the sampled individuals from KW were 
assigned to the second cluster, while five others exhibited lower assignment probabili-
ties to the second cluster (43.2–58.1%). Obvious differences of proportion in the two 
inferred clusters were not detected in the five other populations (Table 3).

The population demography analysis showed no significant heterozygosity excess 
observed under all three mutation models by the Wilcoxon sign-rank test (P>0.05), 
which suggested that P. argenteus should be in mutation-drift equilibrium (Table 4). 
Additionally, a normal L-shaped allele frequency distribution (‘mode-shift’ indicator) 
was detected for all six populations, suggesting population stability.
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Figure 3. 3D-FCA showing relationships among six populations of P. argenteus based on seven microsatellite 
loci. Abbreviations: SO: Sonmiani Bay, OR: Ormara, PS: Pasni, KW: Kuwait, TW: Taiwan, XM: Xiamen.

Figure 4. Results of the STRUCTURE analysis from seven microsatellite loci in P. argenteus (K = 2). 
Vertical lines are proportional to the probability of individual membership in the simulated cluster. Ab-
breviations: SO: Sonmiani Bay, OR: Ormara, PS: Pasni, KW: Kuwait, TW: Taiwan, XM: Xiamen.
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Table 3. Proportion of six P. argenteus populations in each of the two inferred clusters.

Populations
Inferred clusters

Number of individuals
1 2

SO 0.568 0.432 21
OR 0.474 0.526 28
PS 0.419 0.581 12
KW 0.292 0.708 23
TW 0.494 0.506 11
XM 0.420 0.580 24

Abbreviatiosn: SO: Sonmiani Bay, OR: Ormara, PS: Pasni, KW: Kuwait, TW: Taiwan, XM: Xiamen.

Table 4. Results of Wilcoxon’s heterozygosity excess test, Mode shift indicator for a genetic bottleneck 
in six P. argenteus populations.

Populations
Wilcoxon sign-rank test

Mode shift
IAM TPM SMM

SO 0.004 0.469 0.531 L
OR 0.004 0.531 0.711 L
PS 0.008 0.234 0.469 L
KW 0.148 0.961 0.996 L
TW 0.020 0.289 0.289 L
XM 0.004 0.004 0.945 L

Abbreviations: SO: Sonmiani Bay, OR: Ormara, PS: Pasni, KW: Kuwait, TW: Taiwan, XM: Xiamen.

Discussion

The degree of genetic variation is particularly important for the sustainability and 
evolution of species, and the strong correlation between genetic diversity and overall 
fitness has been reported (Reed and Frankham 2003; Vandewoestijne et al. 2008). 
Population genetic analyses could provide important insights on the genetic diversity 
of species and have directly informed fishery managers about the appropriate units of 
management (Ovenden et al. 2010; Dudgeon et al. 2012). Microsatellites are charac-
terized by a high degree of length polymorphism (Zane et al. 2002), and they represent 
one of the most popular molecular markers in population genetic studies (Carlsson 
et al. 2004; Cheng et al. 2015). In this study, high average NA, heterozygosity values 
and PIC of P. argenteus were detected by seven microsatellite loci, which is consist-
ent with the mitochondrial DNA results of previous studies (Li et al. 2017b). High 
genetic diversity by mitochondrial DNA and microsatellite DNA may be related to 
a large effective population size, the immigration of new genes by the intermixing of 
different populations and/or low selection pressure. Although many marine organisms 
have been subjected to overfishing, Pampus argenteus presents a considerable yield, in-
dicating a large population size. The wide distribution range of habitats indicates that 
P. argenteus faces limited natural selection pressure and can accumulate greater genetic 
variation. Significant excess HO was not observed, which showed that P. argenteus has 
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not experienced bottleneck effect events. Moreover, the selection of loci with high PIC 
for the analysis can also lead to high genetic diversity.

Microsatellite markers have demonstrated to be highly sensitive for detecting the 
population structure of fish (Cheng et al. 2015; Stepien et al. 2017; Li et al. 2018). 
In this study, analyses based on seven microsatellite loci revealed low levels of genetic 
differentiation for P. argenteus. The Bayesian clustering analysis by STRUCTURE also 
suggested that the distribution proportions of two inferred clusters were not very differ-
ent from each other. Similar level of genetic differentiation was detected in mitochon-
drial DNA (Li et al. 2017b). Marine fish populations usually show fluent gene flow and 
low levels of genetic differentiation because of their high dispersal potential of different 
life-history stages coupled with an absence of physical barriers to movement (Behere-
garay and Sunnucks 2001). Physical distance has frequently been considered the main 
factor for isolation (Palumbi 1994). However, although long geographic distances oc-
curred among the three countries, the expected genetic differentiation was not detected. 
Marine currents may play an important role in shaping the contemporary phylogeo-
graphic pattern of marine fishes (Xie and Watanabe 2007). For example, the eggs, lar-
vae, or active adults of Trachurus japonicus can be transported over a long distance by 
the Kuroshio Current along the shelf slope of the East China Sea from areas northeast 
of Taiwan to the coastal waters of Japan (Cheng et al. 2015). The migratory behavior of 
P. argenteus during its entire life stage could increase the gene flow and weaken the ge-
netic differentiation among geographic populations (Beheregaray and Sunnucks 2001).

In conclusion, high genetic homogeneity among six P. argenteus populations was 
detected, and the contemporary genetic structure of the species revealed in this study 
can preliminarily improve the genetic knowledge and provide a firm basis to guide fish-
ery stock management in the Indo-Pacific Ocean. Unfortunately, only six geographical 
populations of P. argenteus were collected, which is not sufficient for an even sampling 
throughout its entire distribution in the Indo-Pacific Ocean. To describe the phylo-
geographic pattern of P. argenteus, additional representative populations should be col-
lected for further analysis.
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