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Abstract
Although fl ightless alcids from the Miocene and Pliocene of the eastern Pacifi c Ocean have been known 

for over 100 years, there is no detailed evaluation of diversity and systematic placement of these taxa. 

Th is is the fi rst combined analysis of morphological and molecular data to include all extant alcids, the 

recently extinct Great Auk Pinguinus impennis, the mancalline auks, and a large outgroup sampling of 29 

additional non-alcid charadriiforms. Based on the systematic placement of Mancallinae outside of crown 

clade Alcidae, the clade name Pan-Alcidae is proposed to include all known alcids. An extensive review of 

the Mancallinae fossil record resulted in taxonomic revision of the clade, and identifi cation of three new 

species. In addition to positing the fi rst hypothesis of inter-relationships between Mancallinae species, 

phylogenetic results support placement of Mancallinae as the sister taxon to all other Alcidae, indicating 

that fl ightlessness evolved at least twice in the alcid lineage. Convergent osteological characteristics of 

Mancallinae, the fl ightless Great Auk, and Spheniscidae are summarized, and implications of Mancallinae 

diversity, radiation, and extinction in the context of paleoclimatic changes are discussed.
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Introduction

Alcidae Leach 1820 is a clade of pelagic wing-propelled-diving Charadriiformes Hux-

ley 1867 including 23 extant species with an exclusively northern hemisphere distribu-

tion (del Hoyo et al. 1996). Th e fossil record indicates that alcid diversity during the 

Late Miocene (11.6–5.3 mya) and Early Pliocene (5.3–3.6 mya) equaled or exceeded 

extant alcid diversity (Olson 1985; Olson and Rasmussen 2001; Dyke and Walker 

2005; Smith et al. 2007), although systematic evaluation of fossils referred to Alcidae 

is needed to refi ne estimates of paleodiversity in the clade. Additionally, the systematic 

position of most extinct species referred to Alcidae have yet to be evaluated in a phy-

logenetic analysis.

Primarily owing to the penguin-like characteristics of the fl ightless Great Auk Pin-

guinus impennis (Linnaeus 1758), alcids were grouped systematically with penguins and 

other ‘waterbirds’ including loons, grebes, and ducks by many ornithologists in the 18th 

and 19th centuries (Linnaeus 1758; Vigors 1825; Brandt 1837; Swainson 1837; Coues 

1868), and this misconception lingered well into the 20th century (Verheyen 1958). 

However, there is consensus among modern classifi cations with regard to the placement 

of Alcidae in a monophyletic Charadriiformes (Ridgway 1919; Storer 1960; Ameri-

can Ornithologists’ Union 1998). Analyses of morphological (Strauch 1978; Björklund 

1994; Chu 1995; Livezey and Zusi 2006, 2007; Livezey 2009, 2010; Mayr 2011) and 

molecular data (Sibley and Ahlquist 1972; Sibley and Ahlquist 1990; Ericson et al. 

2003; Paton et al. 2003l; Th omas et al. 2004; Cracraft 2004; Paton and Baker 2006; 

Fain and Houde 2007) support the charadriiform affi  nities of Alcidae. Furthermore, 

phylogenetic analyses of molecular data with dense taxonomic sampling for Alcidae 

support the monophyly of an extant alcid clade (Th omas et al. 2004; Baker et al. 2007; 

Pereira and Baker 2008). Previous morphology based analyses of alcid relationships 

have been limited with respect to taxon sampling. Th e compatability analysis of Strauch 

(1978) included only three alcid species and the subsequent analysis of alcid relation-

ships (Strauch1985) did not include any outgroup taxa. Th e parsimony based analysis 

of alcid relationships by Chandler (1990a) was limited to a hypothetical outgroup ter-

minal. Th e recent morphology based analyses of Livezey and Zusi (2006, 2007) Livezey 

(2009, 2010) and Mayr (2011) included Alcidae as a single, taxon level terminal.

Although all extant alcids are volant, two lineages of extinct fl ightless auks are 

known. Th ese fl ightless auks superfi cially resemble penguins, and share many mor-

phological features convergent with those southern hemisphere wing-propelled divers 

such as an elongated fi rst metacarpal and humeri with anteriorly rotated humeral heads 

(Miller and Howard 1949; see Appendix 1). During the Miocene and Pliocene a diverse 

assemblage of alcids including the fl ightless Great Auk Pinguinus Bonnaterre, 1790, and 

other volant auks such as Alca Linnaeus, 1758 and Miocepphus Wetmore, 1940 were 

present in the Atlantic Ocean (Olson and Rasmussen 2001; Wijnker and Olson 2009). 

Similarly, during the Miocene and Pliocene the Pacifi c was inhabited by a lineage of 

fl ightless alcids known as the Mancallinae Brodkorb 1967. Although Mancallinae (con-

tents = Mancalla Lucas, 1901 + Praemancalla Howard, 1966; sensu Brodkorb 1967; Ol-
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son 1985) and Pinguinus share several morphological characteristics related to extreme 

adaptation for wing-propelled diving and the subsequent loss of aerial fl ight (Fig. 1), 

phylogenetic results indicate that these taxa are not closely related within Alcidae. Pin-

guinus is consistently recovered as the sister taxon to Alca (Chandler 1990a; Moum et. 

al. 2002; Baker et. al. 2007; Pereira and Baker 2008), and previous phylogenetic analy-

ses place Mancallinae as the sister taxon to all other Alcidae (Chandler 1990a; Smith 

2008), suggesting that fl ightlessness evolved separately in Mancallinae and Pinguinus.

Fossil records of Mancallinae are restricted to the northern Pacifi c Ocean basin. 

Miocene and Pleistocene aged fossils have been reported from Japan (Hasegawa et 

al. 1988; Kohno 1997; Fig. 2), although these remains have not been systematically 

described or fi gured in publication. In contrast to the sparse record of the clade from 

the western Pacifi c Ocean, thousands of mostly isolated remains are known from Cali-

fornia, USA and northern Baja California, Mexico (Miller and Howard 1949; Howard 

1966, 1968, 1970, 1971, 1976, 1978, 1981, 1982; Chandler 1990b; Fig. 2), and range 

in age from Late Miocene to Late Pleistocene (Table 1). Th e northernmost occurrence 

is in Humboldt County California (H  oward 1970; Kohl 1974) and the southernmost 

occurrence is in Baja California, Mexico (Howard 1971).

Discovery of an articulated partial skeleton referable to Mancallinae (SDSNH 

68312) from the Early Pliocene Capistrano Formation of Orange County Califor-

nia prompted a re-examination of diversity and morphological variation within this 

clade. Previously reported Mancallinae remains are reviewed (Appendix 1), and the 

results of an extensive survey of Mancallinae remains are reported. Th ree new species 

of Mancallinae are described, and the systematic placement of Mancallinae within 

Alcidae, as well as the inter-relationships of Mancallinae species is evaluated in a 

combined phylogenetic analyses of morphological and molecular sequence data. Th is 

study represents the fi rst time that relationships among all 23 extant alcids and 29 

other charadriiform outgroup taxa have been assessed in the context of a combined 

phylogenetic analysis.

Materials and methods

Anatomical terminology and taxonomic conventions

Description of anatomical features primarily follows the English equivalents of the 

Latin osteological nomenclature summarized by Baumel and Witmer (1993). Th e 

terminology of Howard (1929) is followed for features not treated by Baumel and 

Witmer (1993). Measurements follow those proposed by Von den Driesch (1976). All 

measurements were taken using digital calipers and rounded to the nearest tenth of 

a millimeter. Ages of geologic time intervals are based on the International Geologic 

Timescale (Gradstein et al. 2004; Ogg et al. 2008).

W   ith the exception of species names (e.g., Fratercula arctica), which follow the 7th 

edition of the Checklist of North American Birds (American Ornithologists’ Union 



N. Adam Smith /  ZooKeys 91: 1–116 (2011)4

Figure 1.  Comparison of alcid humeri in posterior view. Previously recognized Mancallinae holotype 

humeri along with examples of Pinguinus impennis and volant Alca torda humeri for comparison (dotted 

lines represent reconstructed parts of humeri). A Holotype specimen of Mancalla californiensis (USNM 

4976) B Holotype humerus of Mancalla cedrosensis (LACM 15373) C Holotype specimen of Miomancal-

la wetmorei (LACM 42653) D Pinguinus impennis (USNM 623465) E Alca torda (NCSM 20058). Ana-

tomical abbreviations: cg capital groove d deltopectoral crest dsp dorsal supracondylar process fp fl exor 

process pf1 primary pneumotricipital fossa sc supracoracoidal crest.

1998) for extant species, all taxonomic designations (e.g., Fratercula) are intended as 

clade names as defi ned by the International Code of Phylogenetic Nomenclature (i.e., 

Th e PhyloCode v.4c; Cantino and de Queiroz 2010), regardless of use of italics or 

previous rank recognized by other authors, and are not intended to convey rank under 

the Linnaean system of nomenclature. Th e PhyloCode recommendation that all scien-

tifi c names be italicized (Recommendation 6.1A) was not followed here. Only species 

names are italicized herein. Pursuant to Article 21.2 of the PhyloCode, the fi rst word of 

species names are considered prenomen, not genus names (see also Dryat et al. 2008).

Taxon and character sampling

All extinct taxa were evaluated by direct observation of holotype and referred speci-

mens. Whenever available, a total of fi ve or more specimens of each extant species 

(Appendix 2) including both sexes were evaluated to account for intraspecifi c character 
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variation and sexual dimorphism respectively. Only adult specimens, assessed based 

upon degree of ossifi cation (Chapman 1965), were evaluated for osteological char-

acters, and when available, specimens from multiple locations within the geographic 

range of extant species (i.e., subspecies) were examined to account for geographic vari-

ation within species. Reproductive, chick integument, dietary, and some myological 

characters were scored from published sources (Appendix 3). Descriptions of anatomi-

cal characteristics are followed by character numbers and character state symbols from 

Appendix 3 (e.g., 23:0 = character number 23, character state 0).

Th e cladistic matrix (Appendix 4) includes 72 terminals, scored for a maximum of 

344 morphological characters (284 binary; 60 multistate; 15 ordered). All 23 extant al-

cids, the recently extinct Great Auk Pinguinus impennis Linnaeus, 1758, 18 Mancal-

linae specimens, and a Mancallinae supraspecifi c terminal are included in the matrix. 

Twenty-nine other extant charadriiforms comprise the remainder of the taxa analyzed, 

and provide a dense outgroup taxonomic sample to test the monophyly of extant and 

extinct alcids. with respect to other charadriiforms. Morphological characters include 

osteological (n = 223), integumentary (n = 32), ethological (n = 16), myological (n = 24) 

and micro-feather (n = 52). One hundred and fi fty-fi ve characters were newly identifi ed 

for this analysis. Th e other 189 characters were drawn from the work of Hudson et al. 

(1969; n = 24), Strauch (1978, 1985; n = 39), Chandler (1990a; n = 63), Chu (1998; n = 

Figure 2.  Map depicting Mancallinae fossil localities. 1 Shiriya, Honshu, Japan 2 Humboldt County, 

CA, USA 3 Los Angeles, CA, USA 4 Laguna Hills, and Laguna Niguel, CA, USA 5 San Diego, CA, USA 

6 Cedros Island, Baja California, Mexico.
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Table 1. Mancallinae holotype material. See Appendix 1 for details of the taxonomic revision.

Taxon Holotype
material

Provenience Age Reference Taxonomic
Status

Mancalla 
californiensis

Humerus Los Angeles,

CA

Early

Pliocene

Lucas 1901 Mancalla
californiensis

Mancalla 
diegensis

Femur San Diego,

CA

Early

Pliocene

Miller 1937 Pan-Alcidae

incertae sedis

Praemancalla 
lagunensis

Distal 

Humerus

Laguna Hills,

CA

Late

Miocene

Howard 1966 Mancallinae

incertae sedis

Alcodes
ulnulus

Ulna Laguna Hills,

CA

Middle

Miocene

Howard 1968 Pan-Alcidae

incertae sedis

Mancalla 
milleri

Femur San Diego,

CA

Early

Pliocene

Howard 1970 Pan-Alcidae

incertae sedis

Mancalla
cedrosensis

Partial

Skeleton

Baja Calif.,

Mexico

Late

Miocene

Howard 1971 Mancalla
cedrosensis

Praemancalla
wetmorei

Humerus Laguna Niguel,

CA

Late

Miocene

Howard 1976 Miomancalla
wetmorei

Mancalla 
emlongi

Ulna San Diego,

CA

Early

Pliocene

Olson 1981 Mancallinae

incertae sedis

Miomancalla
howardi

Partial

Skeleton

San Diego,

CA

Late

Miocene

Smith 2011 Miomancalla
howardi

Mancalla
lucasi

Partial

Skeleton

San Diego,

CA

Early

Pliocene

Smith 2011 Mancalla
lucasi

Mancalla
vegrandis

Partial

Skeleton

San Diego,

CA

Early

Pliocene

Smith 2011 Mancalla
vegrandis

11), and Dove (2000; n = 34). Only 34 of the 38 characters used by Dove (2000) varied 

in the taxa examined in this study. Of the 34 used in this analysis, eighteen were modifi ed 

(i.e., split into 2 separate characters) according to the philosophy of character independ-

ence proposed by Hawkins et al. (1997), resulting in a total of 52 microfeather characters.

Th e cladistic matrix also includes a molecular sequence alignment of 11,601 base 

pairs from eight DNA sequence types (including gaps). See Appendix 5 for details 

of sequence availability, inclusion for each species, and sequence authorship. Mo-

lecular sequence data (mitochondrial: ND2, ND5, ND6, CO1, CYTB; ribosomal 

RNA: 12S, 16S; and nuclear: RAG1) were downloaded from GenBank. Preliminary 

sequence alignments for each gene were obtained using the program ClustalX v2.0.6 

(Th ompson et al. 1997), and then manually adjusted using the program Se-Al v2.0A11 

(Rambaut 2002).

Phylogenetic analyses

A combined approach of phylogeny estimation was used to evaluate the systematic po-

sition of Mancallinae species. Simulations show that the combination of molecular and 

morphological data often provides a more accurate estimate of phylogeny with respect 
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to both extant and extinct organisms (Wiens 2009). Phylogenetic analyses employed 

the parsimony criterion of phylogenetic inference as implemented in PAUP* v4.0b10 

(Swoff ord 2002). Parsimony tree search criteria are as follows: heuristic search strategy; 

10,000 random taxon addition sequences; tree bisection-reconnection branch swap-

ping; random starting trees (primary analysis only); all characters equally weighted; 

minimum length branches = 0 collapsed; multistate (e.g., 0&1) scorings used only for 

polymorphism. Bootstrap values and descriptive tree statistics including consistency 

index (CI), retention index (RI), and rescaled consistency index (RC) were calculated 

using PAUP* v4.0b10 (Swoff ord 2002). Bootstrap value calculation parameters in-

cluded 1,000 heuristic replicates, 100 random addition sequences per replicate. All 

other settings were the same as the primary analysis. Bremer support values were cal-

culated using a script generated in MacClade v4.08 (Maddison and Maddison 2005) 

and analyzed with PAUP* v4.0b10 (Swoff ord 2002). Based on the results of previous 

phylogenetic analyses of charadriiform relationships (Strauch 1978; Sibley and Ahl-

quist 1990; Chu 1995; Ericson et al. 2003; Paton et al. 2003; Th omas et al. 2004; 
Baker et al. 2007) resultant trees were rooted with the clade represented by exemplars 

of Charadrius vociferus Linnaeus 1758 and Charadrius wilsonia Ord, 1814.

Institutional abbreviations

AMNH—American Museum of Natural History, New York, NY, USA; GCVP—

Georgia College and State University Vertebrate Paleontology Collection, Milled-

geville, GA, USA; IVPP—Institute of Vertebrate Paleontology and Paleoanthropol-

ogy, Beijing, China; LACM—Natural History Museum of Los Angeles County, Los 

Angeles, CA., USA; LM—Loye Miller Collection, location presently unknown; NSM 

PO—National Museum of Nature and Science Paleontology Osteological Collec-

tion, Tokyo, Japan; NCSM—North Carolina Museum of Natural Sciences, Raleigh, 

NC, USA; SDSNH—San Diego Natural History Museum, San Diego, CA, USA; 

TMM—Texas Natural Science Center Vertebrate Paleontology Laboratory, Austin, 

TX, USA; UCMP—University of California Museum of Paleontology, Berkeley, CA, 

USA; USNM—National Museum of Natural History, Smithsonian Institution, Wash-

ington, D.C., USA.

Systematic Paleontology

AVES Linnaeus, 1758
CHARADRIIFORMES Huxley, 1867
PAN-ALCIDAE new taxon.

P  an-Alcidae (contents = Alcidae Leach, 1820 (i.e., the alcid crown clade) + Mancal-

linae) is diff erentiated from all other Charadriiformes by the following characteris-
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tics: quadrate apneumatic (38:1); reduced pneumatic foramen of anterior sternum 

(59:0); omal extremity of furcula angled sharply rather than gently curving as in other 

charadriiforms (75:1); coracoidal tuberosity of furcula, positioned anterior to coracoi-

dal facet (77:1); dorsoventral compression of humeral shaft exceeds that of all other 

charadriiforms (141:1/2); bicipital tubercle of radius distally elongated rather than in 

the form of a rounded tubercle as in other charadriiforms (162:1). Apomorphies of the 

alcid crown clade, Alcidae, are provided in Table 4.

Mancallinae Brodkorb, 1967

MANCALLINAE (contents = Mancalla + Miomancalla gen. n.) is referable to Pan-Al-

cidae based upon dorsoventral compression of the humeral shaft (141:2). Th e humeral 

shafts of Pan-Alcidae are more dorsoventrally compressed than in all other Charadrii-

formes. Mancallinae is diff erentiated from all other alcids on the basis of the following 

unambiguously optimized humeral apomorphies: deltopectoral crest extends past the 

midway point of the humeral shaft rather than restricted to the proximal half of the 

humeral shaft (104:2); presence of a ‘mancalline muscle scar’ extending distally from 

the primary pneumotricipital fossa (discussed below; 120:1); capital groove communi-

cates with transverse ligament sulcus resulting a notched rather than rounded appear-

ance of ventral margin of the humeral head in anterior view (136:2); humeral head 

rotated anterodorsally rather than in-line with humeral shaft (139:1); humeral shaft 

arced rather than sigmoidal (140:1); presence of fossae in tricipital sulci (150:1); an-

terior surface of the ventral condyle rounded rather than fl attened (153:0). Additional 

proposed apomorphies of Mancallinae include distal elongation (184:1) and anterior 

fl attening of the fi rst metacarpal (185:1). Th ese characteristics are present in Mancalla 

cedrosensis Howard, 1971, Miomancalla howardi sp. n., and two additional associated 

specimens referable to Mancallinae (SDSNH 77966 and LACM 107028). Although 

these two characters are also diagnostic for Alcini Storer, 1960, the clade composed of 

Alca, Pinguinus, Alle Link, 1806, and Uria Brisson, 1760, the degree of distal elonga-

tion and anterior fl attening in Mancalla exceeds that observed in Alcini.

Mancalla Lucas, 1901

Original diagnosis (sensu Lucas, 1901)—Referable to Alcidae based upon dorsoventral 

compression of the humeral shaft. Diff ers from other Alcidae in the following charac-

teristics: humerus short, with arced rather than sigmoid lengthwise curvature; anterior 

rotation of the humeral head; ventral margin of m. brachialis scar a distinct ridge.

Amended diagnosis. Mancalla is diff erentiated from Miomancalla on the basis of 

the following humeral characteristics: supracoracoidial crest does not broaden proxi-

mally (113:2); distal margin of the primary pneumotricipital fossa convex rather than 

concave (126:0); ventral margin of the ventral tubercle narrow and ventrally expanded 



Taxonomic revision and phylogenetic analysis of the fl ightless Mancallinae (Aves, Pan-Alcidae) 9

(i.e., convex) rather than wide and deeply grooved (134:0); capital groove constricted 

rather than wide (137:1). Additional proposed apomorphies which are present in Man-

calla cedrosensis and two additional associated specimens (SDSNH 77966 and LACM 

128870) referable to Mancalla but not to species include: ulna shorter than carpo-

metacarpus (180:1); ulna and radius more dorsoventrally compressed than other alcids; 

extension of the dorsal ulnar condyle farther distally to the ventral ulnar condyle than 

in other alcids (182:0); pisiform process of carpometacarpus reduced or absent (188:1).

Mancalla lucasi sp. n.
urn:lsid:zoobank.org:act:31389B4B-0A03-48E5-8A0B-C71CDBCE7164

Holotype. SDSNH 25237: a partial postcranial skeleton comprising the following 

elements: right and left scapulae, partial sternum, right and left humeri, left femur 

(Fig. 3; Tables 1, 2 and 3). Th e holotype specimen was collected by H. M. Wagner in 

April, 1980.

Etymology. Th is new species is named in honor of Frederic A. Lucas who de-

scribed the fi rst known remains of Mancalla.

Locality and horizon. Late Pliocene or Early Pleistocene (Zanclean or Calabrian) 

Niguel Formation of Orange County, California. Latitude, longitude, and elevation 

data are on fi le at SDSNH (locality 3202). Details of the geologic setting are provided 

in Appendix 6.

Referred specimen. SDSNH 59049: a complete left humerus from the Middle 

Pliocene to Early Pleistocene San Diego Formation (SDSNH locality 3506; Fig. 4E).

Diff erential diagnosis. Scar extending into primary pneumotricipital fossa is 

raised in relief to the fl oor of the primary pneumotricipital fossa and the humeral 

shaft as in Mancalla cedrosensis, rather than an excavated pit as in Mancalla vegrandis 

sp. n. and Mancalla californiensis Lucas 1901 (121:1; Fig. 5); dorsal and ventral edges 

of scar extending into primary pneumotricipital fossa taper to a point as in Mancalla 
vegrandis, rather than remaining parallel as in Mancalla californiensis and Mancalla 

cedrosensis (123:1); humerus longer than Mancalla cedrosensis, Mancalla californiensis, 

and Mancalla vegrandis (Tables 2, 3).

Anatomical description. Both scapulae are preserved (Fig. 3G, H). As in all Alci-

dae, the scapular shaft is mediolaterally compressed throughout its entire length. Th e 

proximal end of the scapular shaft is more rounded in other Charadriiformes. As in 

Mancalla vegrandis, the acromion projects farther anteriorly than that of Mancalla ce-

drosensis and other alcids (e.g., Uria, Aethia). As in Mancalla cedrosensis, the coracoidal 

tubercle is less pronounced than in Mancalla vegrandis. As in Mancalla vegrandis and 

Mancalla cedrosensis, a scapulotricipital tubercle is present just distal to the glenoid 

process on the ventral margin of the scapular shaft. Th is feature is also present in other 

fl ightless wing-propelled divers such as Spheniscidae and Pinguinus, but is not known 

in any volant alcid. As in Mancalla vegrandis, the scapular shaft, including the caudal 

extremity, is slightly more robust than in other alcids (e.g., Alca, Aethia). Th e caudal 

http://zoobank.org/?lsid=urn:lsid:zoobank.org:act:31389B4B-0A03-48E5-8A0B-C71CDBCE7164
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Figure 3.  Holotype specimen of Mancalla lucasi (SDSNH 25237). A Fragment of anterior sternum in 

anterior view B Carinal apex of sternum in right lateral view C Right humerus in anterior view D Left 

humerus in proximal view E Left humerus in distal view F Left humerus in posterior view G Left scapula 

in lateral view H Right scapula in medial view I Left femur in anterior view. Anatomical abbreviations: 

a acromion process bc bicipital crest c caput ca carinal apex ce caudal extremity of scapula cg capital 

groove cs coracoidal sulcus ct coracoidal tubercle d deltopectoral crest dc dorsal condyle dsp dorsal 

supracondylar dst dorsal supracondylar tubercle fh femoral head fp fl exor process gp glenoid process 

hs humerotricipital sulcus le lateral epicondyle pf1 primary pneumotricipital fossa ps pectoralis scar 

sc supracoracoidal crest si sulcus intercondylaris sr sternal rostrum ss scapulotricipital sulcus st scapu-

lotricipital tubercle tc trochanteric crest tls transverse ligament sulcus vc ventral condyle vst  ventral 

supracondylar tubercle vt ventral tubercle.
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extremity is less dorsoventrally expanded than in Mancalla vegrandis. Th e caudal ex-

tremity is not known for Mancalla cedrosensis.
Fragments of the sternum preserve the sternal rostrum, coracoidal sulci, and the 

carinal apex (Fig. 3A, B). Th ese features are not preserved in Miomancalla howardi 

and comparisons are therefore limited to extant alcids and specimens of Mancallinae 

that are not presently referable to species. Th e morphology of the sternal rostrum is 

consistent with that of all other Alcidae. Although no coracoid is preserved in the holo-

type specimen of Mancalla lucasi, the shape of the coracoidal sulci of the sternum is 

consistent with the ~150° angle of the sternal articulation of the coracoid in Mancalla 
cedrosensis and Mancalla vegrandis. Th e sternal articulation of the coracoid, and the 

coracoidal sulci of the sternum in other alcids curves more acutely (e.g., ~90° in Alca 

torda; Fig. 6).

Complete right and left humeri are preserved (Fig. 3C, D, E and F). Based upon 

humeral proportions, M. lucasi represents the largest known species of Mancalla (Ta-

ble 2). As in other Mancalla species, the ventral margin of the ventral tubercle is con-

vex, and the capital groove is relatively narrower than other Alcidae. Th e ventral tu-

bercle does not project as far ventrally as in Mancalla californiensis (Fig. 5). Th e distal 

end of the deltopectoral crest transitions to the shaft more abruptly than in Mancalla 

Figure 4.  Mancalla referred humeri in anterior view. A Mancalla vegrandis SDSNH 28152 B Mancalla 

vegrandis SDSNH 42534 C Mancalla vegrandis SDSNH 75051 D Mancalla vegrandis SDSNH 42532 

E Mancalla lucasi SDSNH 59049.
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vegrandis. As in other Mancalla, the humeral head is rotated anteriorly, and the supra-

coracoideus muscle scar does not broaden proximally. Mancallinae is characterized 

by a scar of unknown function that is positioned adjacent to the primary pneumotri-

cipital fossa (hereafter referred to as the ‘mancalline scar’; Fig. 5). Th e position of the 

‘mancalline scar’ suggests an accessory insertion of m. humerotriceps (Howard 1949), 

which can be divided into as many as four separate heads in some birds (Baumel and 

Witmer 1993). Other potentially homologous muscle scars include m. coracobrachia-

lis cranialis, which is well developed in penguins (Ksepka et al. 2008), or m. scapu-

locranialis caudalis (see Matsuoka and Hasegawa 2007). However, the exact function 

of this feature is unknown because it is not present in any other charadriiform. Th e 

shape, position, and development of this scar is variable in Mancallinae (Fig. 5). Th e 

‘mancalline scar’ of Mancalla lucasi is raised in relief like that of Mancalla cedrosensis, 
rather than excavated as in Mancalla californiensis and Mancalla vegrandis (Fig. 5). As 

in Mancalla vegrandis, the scar extends from a point just proximal to the junction of 

the bicipital crest with the humeral shaft, tapers to a point, and extends into the pri-

mary pneumotricipital fossa (Fig. 5). Th e dorsal and ventral margins of the ‘mancalline 

scar’ remain approximately parallel in Mancalla californiensis and Mancalla cedrosensis 

(Fig. 5). As in all Mancallinae, the humeral shaft is arced rather than sigmoidal or 

straight. As in other Mancalla, the dorsal supracondylar process is separated from the 

dorsal epicondyle by a small notch. A tubercle or papilla is present on the posterior 

side of the distal end of the humerus adjacent to the dorsal condyle (Howard 1976). 

As with all Mancallinae, the anterior surface of the ventral condyle is rounded, rather 

than fl attened as in all other alcids. Rounded fossae are present at the proximal ends of 

Table 2. Measurements of Mancallinae holotype humeri (mm). Abbreviations: (Glh) greatest length of 

humerus; (Bph) breadth of proximal humerus; (Diph) diagonal of proximal humerus; (Whs) width of 

humeral shaft; (Bdh) breadth of distal humerus; (Ddh) depth of distal humerus. Measurements according 

to Von den Driesch (1976). ‘~’ signifi es approximate measurement due to damage. ‘—‘ signifi es missing 

data due to damage.

Species Specimen # Glh Bph Diph Whs Bdh Ddh

Mancalla
californiensis

USNM

4976 

~75.0 19.0 18.4 8.9 ___ ___

Mancalla
cedrosensis

LACM

15373 

73.3 17.8 17.1 9.1 13.0 7.1

Mancalla
lucasi

SDSNH

25237

90.2 21.7 21.2 11.1 13.4 8.0

Mancalla
vegrandis

SDSNH

77399

61.8 15.1 14.3 7.4 9.5 5.8

Miomancalla
wetmorei

LACM

42653

~86.0 21.5 21.1 12.7 8.7 9.5

Miomancalla
howardi

SDSNH

24584 

103.2 22.9 22.2 11.1 12.2 8.7

Miomancalla
howardi

SDSNH

68312

___ ~25.0 ~24.0 ___ ___ ___
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Table 3. Measurements of new associated Mancallinae holotype specimens (in mm). ‘-’ = missing data 

due to damage or lack of comparable element.

Miomancalla 
howardi

Mancalla lucasi Mancalla 
vegrandis

SDSNH 68312 SDSNH 25237 SDSNH77399

SKULL & MANDIBLE

Greatest length of skull 122.9 - -

Greatest breadth of frontal 11.4 - -

Greatest length of rostrum 84.2 - -

Greatest height of rostrum 21.1 - -

Greatest length of mandible 127.8 - -

STERNUM

Smallest width between costal 

processes

- - 5.9

FURCULA

Dorsoventral height of apophysis - - 2.8

CORACOID

Greatest length - - 45.8

SCAPULA

Greatest proximal height - 15.1 10.9

CARPOMETACARPUS

Greatest length 46.8 - -

Length of metacarpal one 23.2 - -

Proximal breadth 11.9 - -

PELVIS

Greatest length 127.8 - 74.8

FEMUR

Greatest length 79.9 67.8 -

Medial length 78.0 64.9 -

Proximal breadth 17.8 12.9 -

Proximal depth 10.9 9.2 -

Breadth of shaft 8.3 7.5 -

Distal breadth 18.0 12.5 -

TIBIOTARSUS

Greatest length (preserved) 113.7 - -

Breadth of shaft 7.8 - -

the humerotricipital and scapulotricipital grooves. Th e fl exor process extends distal to 

the ventral condyle as in all Mancallinae and Pinguinus.

Th e left femur is preserved (Fig. 3I) and is smaller (~15%; Table 2) than in Mio-

mancalla howardi sp. n. (Table 3), and larger (~19%) than in Mancalla cedrosensis 

(Howard, 1971). Extant alcids do not display statistically signifi cant degrees of 

sexual dimorphism in their size, plumage, or osteological morphology (Storer 1952; 
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Figure 5.  Line drawings for comparison of Mancallinae proximal humeri in posterior view (not to 

scale). A Miomancalla wetmorei B Miomancalla howardi C Mancalla californiensis D Mancalla cedrosensis 

E Mancalla vegrandis F Mancalla lucasi. Anatomical abbreviations: ms mancalline scar pf1 primary pneu-

motricipital fossa sc supracoracoidal crest vt ventral tubercle.



Taxonomic revision and phylogenetic analysis of the fl ightless Mancallinae (Aves, Pan-Alcidae) 15

Nettleship and Birkhead 1985; Szekely et al. 2000). Th us, it can be reasonably as-

sumed that extinct alcids were also not sexually dimorphic as the proposed sister 

taxon of all alcids, the Stercorariidae (Ericson et al. 2003; Th omas et al. 2004; Baker 

et al. 2007; Pereira and Baker 2008), as well as the closely related Laridae are also 

not sexually dimorphic. Th is range of size between Mancalla species is greater than 

the range of intraspecifi c variation documented for other alcids (~1-5%), includ-

ing the fl ightless Great Auk (Moen 1991; Burness and Montevecchi 1992). As in 

Alle, Cepphus Mörhing, 1758, Synthliboramphus Brandt, 1837, and Brachyramphus 

Brandt, 1837, the femoral trochanter projects anteriorly in lateral view. Th e femoral 

trochanter in Uria, Aethia Merrem, 1788, Alca, and Pinguinus is not projected ante-

riorly (i.e., straight), and the trochanter is concave in lateral view in Fratercula Bris-

son, 1760 and Cerorhinca Bonaparte, 1828. Femora of Miocepphus are not known. 

No diagnostic characteristics of the femur of Mancalla lucasi were identifi ed.

Remarks. Mancalla lucasi corresponds in size and some humeral characteristics 

with material previously referred to Mancalla diegensis. However, Mancalla diegensis is 

considered Alcidae incertae sedis (see Appendix 1 for details of the taxonomic revision).

Mancalla vegrandis sp. n.
urn:lsid:zoobank.org:act:8F6D55BF-C827-47C3-AAB6-777632C92DB6

Holotype. SDSNH 77399: a partial postcranial skeleton comprising the following 

elements: two cervical vertebrae, one costal and one vertebral rib, partial furcula, scap-

ulae, left coracoid, partial right coracoid, partial sternum, left humerus, and pelvis 

(Figs 7 and 8; Tables 1, 2 and 3). Th e holotype specimen was collected by W. T. Stein 

in October, 1961.

Etymology. Th e species name vegrandis refl ects the diminutive size of this taxon 

compared to other known Mancalla species (vegrandis, from the Latin for small, di-

minutive or tiny).

Locality and horizon. Middle Pliocene to Early Pleistocene (Zanclean-Calabrian) 

San Diego Formation of San Diego County, California. Latitude, longitude, and el-

evation data are on fi le at SDSNH (locality 4273). Details of the geologic setting are 

provided in Appendix 6.

Referred specimens. SDSNH 42532: a complete left humerus from the Middle 

Pliocene to Early Pleistocene San Diego Formation of San Diego County, California 

(SDSNH locality 3468); SDSNH 42534: a complete right humerus from the Middle 

Pliocene to Early Pleistocene San Diego Formation of San Diego County, California 

(SDSNH locality 3468); SDSNH 28152: a complete right humerus from the Early 

Pliocene upper member of the San Mateo Formation of San Diego County, California 

(SDSNH locality 3161); SDSNH 75051: a complete right humerus from the Early 

Pliocene upper member of the San Mateo Formation of San Diego County, California 

(SDSNH locality 2643; Fig. 4A–D).

http://zoobank.org/?lsid=urn:lsid:zoobank.org:act:8F6D55BF-C827-47C3-AAB6-777632C92DB6
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Diff erential diagnosis. Dorsal and ventral edges of the mancalline scar extending 

into primary pneumotricipital fossa taper to a point as in Mancalla lucasi, rather than 

remaining parallel as in Mancalla californiensis and Mancalla cedrosensis (123:1; Fig. 5); 

mancalline scar extending into primary pneumotricipital fossa is an excavated pit as 

in Mancalla californiensis rather than raised in relief to the fl oor of the primary pneu-

motricipital fossa and the humeral shaft as in Mancalla cedrosensis and Mancalla lucasi 

(121:0); humerus shorter than other known Mancalla (Tables 2 and 3).

Anatomical description. Two cervical vertebrae are preserved (Fig. 7A and B). 

Comparisons with Miomancalla howardi are limited to generalities regarding shape in 

dorsal view, for which the morphology of Mancalla vegrandis is consistent with that 

of Miomancalla howardi. Only thoracic vertebrae are known for Mancalla cedrosensis. 

One of the vertebrae (Fig. 7A) is mediolaterally narrower than the other (Fig. 7B). 

Although the width of cervical vertebrae other than the axis and atlas do not vary con-

siderably in extant Alcidae, the 3rd and 4th cervical vertebrae of some charadriiforms 

(e.g., Larosterna inca Lesson, 1827) are mediolaterally narrower than cervical verte-

bra posterior to the 4th (i.e., C5, C6, C7). Th e dorsal surface of the broader vertebra 

(Fig. 7B) is perforated by a small foramen (i.e., perforation of laminae arcocostales). 

In extant alcids, only the third and fourth cervical vertebrae are perforated. Typically 

in extant Alcidae, the third cervical vertebra is punctured by a small foramina, whereas 

the foramina in the fourth cervical vertebra is much larger, leaving only a thin strut of 

bone bordering it laterally. Th e morphology of the preserved vertebrae is suggestive of 

C3 and C4; however, defi nitive assignment cannot be made at this time.

One complete cervical rib and one complete costal rib (Fig. 7D and E) are pre-

served along with several other rib fragments (not fi gured). No morphological dif-

ferences were evident between the ribs of Mancalla vegrandis, Mancallinae specimen 

SDSNH 25236, and other alcids for which the ribs are known.

Figure 6.  Comparison of sternal facet curvature in charadriiform left coracoids (sternal view; not to 

scale). A Stercorarius B Mancalla C Alca D Aethia.
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Figure 7.  Holotype specimen of Mancalla vegrandis (SDSNH 77399) A Cervical vertebra (C3?) in dor-

sal view B Cervical vertebra (C4?) in ventral view C Left humerus in posterior view D Costal rib E Ver-

tebral rib F Pelvis in dorsal view. Anatomical abbreviations: ac acetabulum at antitrochanter ats antitro-

chanteral sulcus c capitulum of vertebral rib cg capital groove d deltopectoral crest dis dorsal illiac spine 

dsp dorsal supracondylar process fp fl exor process h hypapophysis is iliosynsacral suture pf1 primary 

pneumotricipital fossa pz postzygapophysis sa sternal articulation of costal rib sc supracoracoidal crest tf 
tricipital fossae vt ventral tubercle.
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Figure 8.  Holotype specimen of Mancalla vegrandis (SDSNH 77399). A Right scapula in medial view 

B Left scapula in lateral view C Partial sternum in ventral view D Partial furcula in posterior view (dashed 

lines represent missing portion of left ramus) E Left coracoid in posterior view. Anatomical abbreviations: 

a acromion process ce caudal extremity of scapula cr sternal carina ct coracoidal tubercle fa furcular 

apophysis ff furcular facet of coracoid gp glenoid process lp latral process of coracoid lt lateral trabeculae 

of sternum pp procoracoid process st scapulotricipital tubercle.
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All but the omal extremities of the furcula are preserved (Fig. 8D). Th e furcular 

rami are mediolaterally compressed as in all other Alcidae. Th e anterior surface of the 

furcular rami dorsal to the apophysis is rounded or convex as in Uria, rather than 

grooved as in Cepphus. Th e furcular apophysis does not bear the ventrally expanded, 

bladelike interclavicular process characteristic of extant Alcidae. However, the possibil-

ity that this feature was lost to damage cannot be ruled out. No additional morphologi-

cal diff erences were evident between the preserved portions of the furcula of Mancalla 

vegrandis and other alcids for which the furcula is known.

Th e left coracoid is complete except for a small portion of the medial margin of the 

sternal facet (Fig. 8E). A fragment of the right coracoid preserves the medial margin 

of the sternal facet and the sternal portion of the coracoidal shaft (not fi gured). As in 

Mancalla cedrosensis the furcular facet is rounded, rather than oval as in Aethia and 

Fratercula. Th e head of the coracoid is apneumatic as in all Alcidae, but the brachial 

tuberosity is deeply undercut as in Alca and Pinguinus. Th e humeral articulation is 

more rounded than in extant Alcidae. As in Cepphus, the scar marking the position of 

m. supracoracoideus is less distinct than in other Alcidae. As in Mancalla cedrosensis, 
Aethia, and Alle, the procoracoidal process is not punctured by a foramen for passage 

of the tendon of m. supracoracoideus. Th e procoracoid process points dorsomedially 

as in all Alcidae except Aethia, in which the procoracoid points more ventromedially. 

As in Mancalla cedrosensis, Brachyramphus, Uria, Aethia, and Ptychoramphus Brandt, 

1837, the sternal margin of the procoracoid process is concave, rather than convex as 

in Cerorhinca, Fratercula, and Pinguinus. As in many alcids (e.g., Alca, Brachyramphus) 

a single, distinct, straight ridge, which extends from the lateral angle of the sternal facet 

towards the humeral facet is present. Th is ridge does not extend sternally in Synthlibo-
ramphus, Cepphus, Fratercula, Aethia, Ptychoramphus, and Cerorhinca. Th is ridge is less 

pronounced and positioned farther laterally in Mancalla cedrosensis. A well-developed 

lateral process is present. Th is feature is absent in Mancalla cedrosensis. Th e dorsal mar-

Figure 9.  Comparison of charadriiform and sphenisciform sterni. A Alca torda (USNM 502382) B Ae-

thia psittacula (NCSM 18514) C Sterna anaethetus (NCSM 17085) D Hydrophasianus chirurgus (USNM 

490566) E Eudyptula minor (TMM M-391).
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gin of the medial sternal process is notched as in most alcids (e.g., Alca torda). As in 

Mancalla cedrosensis, the posterior surface of the sternal end of the coracoid is more 

excavated than in extant Alcidae and the sternal facet is curved ~150°.

Right and left scapulae are preserved (Fig. 8A and B). As in all Alcidae, the scapular 

shaft is mediolaterally compressed throughout its entire length. As in Mancalla lucasi, the 

acromion projects farther anteriorly than that of other alcids (e.g., Uria, Aethia). Th e acro-

mion of Mancalla cedrosensis does not project as far anteriorly as that of Mancalla vegrandis. 

Th e coracoidal tubercle is more pronounced than in Mancalla lucasi and Mancalla cedro-

sensis. As in Mancalla lucasi and Mancalla cedrosensis, a scapulotricipital tubercle is present 

just distal to the glenoid process on the ventral margin of the scapular shaft. As in Mancalla 

lucasi, the scapular shaft, including the caudal extremity, is slightly more robust than in 

other alcids (e.g., Alca, Aethia). Th e caudal extremity is more dorsoventrally expanded than 

in Mancalla lucasi. Th e caudal extremity is not known for Mancalla cedrosensis.

Parts of the left distal end of the sternum including the distal end of the carina, and 

the left lateral process are preserved (Fig. 8C). Mancalla lucasi and Miomancalla howardi 

do not preserve the same portions of the sternum so comparisons cannot presently be 

made between the sterni of Mancallinae. As a result of the deep incisure of the lateral 

notches the lateral processes of Mancalla vegrandis are more elongate that any other alcids 

for which the sternum is known. In other Charadriiformes this condition is present only 

in the Glareolidae and Scolpacidae, and resembles the sternum in Spheniscidae (Fig. 9).

Th e left humerus is preserved (Fig. 7C). Based upon humeral proportions, Mancalla 

vegrandis represents the smallest known species of Mancalla (Table 2). As in other spe-

cies of Mancalla, the ventral margin of the ventral tubercle is convex, and the capital 

groove is relatively narrower than other Alcidae. Th e ventral tubercle does not project 

as far ventrally as in Mancalla californiensis. Th e distal end of the deltopectoral crest 

transitions to the shaft less abruptly than in Mancalla lucasi. As in other Mancalli-

nae, the humeral head is rotated anteriorly and the supracoracoideus muscle scar does 

not broaden proximally. Th e ‘mancalline scar’ is excavated as in Mancalla californiensis, 
rather than raised in relief like that of Mancalla cedrosensis and Mancalla lucasi (Fig. 5). 

As in Mancalla lucasi, the ‘mancalline scar’ extends from a point just proximal to the 

junction of the bicipital crest with the humeral shaft and tapers to a point, and extends 

into the primary pneumotricipital fossa. Th e margins of this scar remain parallel in 

Mancalla californiensis and Mancalla cedrosensis. As in all Mancallinae, the humeral shaft 

is arced rather than sigmoidal or straight. As in other Mancalla, the dorsal supracondylar 

tubercle is separated from the dorsal epicondyle by a small notch. A tubercle or papilla 

is present on the posterior side of the distal end of the humerus adjacent to the dorsal 

condyle (Howard, 1966). As with all Mancallinae, the anterior surface of the ventral 

condyle is rounded, rather than fl attened as in all other Alcidae. Rounded fossae are 

present at the proximal ends of the humerotricipital and scapulotricipital grooves. Th e 

fl exor process extends distal to the ventral condyle as in all Mancallinae and Pinguinus.

Th e pelvis is preserved in dorsal view (Fig. 7F). Comparisons of pelves within Man-

callinae are limited to Miomancalla howardi. As in all alcids the anteroposterior length 

of the pelvis is greater than two times the mediolateral width across the antitrochanters. 
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Th e relative length of the pelves of other charadriiforms is anteroposteriorly shorter. 

Th e proximal end of the preacetabular ilium is wide as in Miomancalla howardi and 

most alcids (e.g., Brachyramphus). Th e distal end of the preacetabular ilium is relatively 

broader than in Miomancalla howardi. As in Miomancalla howardi the antitrochanteral 

sulcus does not extend proximally to contact the antitrochanter. As in most Alcidae 

(e.g., Brachyramphus), the post-acetabular dorsal ilium narrows, rather than broadens 

as in Uria, Cepphus, and some Fraterculinae. Th e iliosynsacral suture is perforated as in 

Uria, Alca, Pinguinus, and Synthliboramphus, rather than fused along its entire length as 

in Cepphus, Brachyramphus, and Fraterculinae. Th e dorsal iliac spine has a pointed tip as 

in all alcids other than Aethia and Ptychoramphus, in which the end of the spine is blunt.

Remarks. Mancalla vegrandis corresponds in size and humeral characteristics with 

some material previously referred to Mancalla milleri Howard, 1970. However, Man-

calla milleri is considered Alcidae incertae sedis (see Appendix 1 for details of the taxo-

nomic revision).

Miomancalla gen n.
urn:lsid:zoobank.org:act:6280FCDF-06BA-46F8-A795-3AFF52A5A001

Type species. Miomancalla howardi sp. n.

Etymology. Mio to refl ect Miocene occurrences of known species within the tax-

on, and mancalla to refl ect the sister group relationship with Mancalla Lucas, 1901.

Diff erential diagnosis. Miomancalla is diff erentiated from Mancalla by the fol-

lowing humeral characteristics: capital groove wider (137:0); supracoracoidial crest 

(sensu Fürbringer 1888; see Baumel and Witmer 1993:98) proximally broader (113:1); 

ventral margin of the ventral tubercle broader and deeply grooved rather than narrow 

and ventrally expanded (134:1); distal margin of the primary pneumotricipital fossa 

concave rather than convex (126:2).

Remarks. Based upon phylogenetic results (see below) and apomorphies shared 

with Miomancalla howardi (see diagnosis above), Praemancalla wetmorei Howard 1966 

is referred to Miomancalla, and becomes Miomancalla wetmorei (Howard 1966). See 

Appendix 1 for additional details of the taxonomic revision.

Miomancalla howardi sp. n.
urn:lsid:zoobank.org:act:BF31D07E-0CFF-4202-BE8C-C5E97F49F625

Holotype. SDSNH 68312: a partial skeleton collected by B. O. Riney on May 31, 

1990 and comprising the following elements: partial skull, mandible, two cervical ver-

tebrae, partial sternum, partial right humerus, left carpometacarpus, pelvis, femora, 

tibiotarsi, left tarsometatarsus (Figs 10, 11; Tables 1, 2 and 3).

Etymology. Th is new species is named in honor of Hildegarde Howard in recogni-

tion of her many contributions to the systematics of extinct Alcidae.

http://zoobank.org/?lsid=urn:lsid:zoobank.org:act:6280FCDF-06BA-46F8-A795-3AFF52A5A001
http://zoobank.org/?lsid=urn:lsid:zoobank.org:act:BF31D07E-0CFF-4202-BE8C-C5E97F49F625
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Figure 10.  Holotype specimen of Miomancalla howardi (SDSNH 68312). A Photograph with contrast 

digitally adjusted to better display bone against similarly colored matrix B Line drawing of holotype speci-

men showing position of preserved elements with bones in light grey and matrix in dark grey.
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Figure 11.  Photograph A and line drawing B of the skull of Miomancalla howardi compared with the 

skull of Pinguinus impennis (C; not to scale; USNM 346387). Cross-hatched lines on the premaxilla 

represent abrasion and dotted lines represent approximate reconstruction of incomplete elements. Ana-

tomical abbreviations: a articular cmf caudal mandibular fenestrae en external nares f frontal j jugal l lac-

rimal m mandible n nasal pm premaxilla nfh nasofrontal hinge o orbit rmf rostral mandibular fenestra 

sq squamosal; ? unidentifi ed bone fragment.
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Locality and horizon. Early Pliocene (Zanclean; Deméré and Berta 2005) up-

per siltstone member of the Capistrano Formation, San Clemente, Orange County, 

California. Latitude, longitude and elevation data on fi le at SDSNH (locality 4160). 

Details of the geologic setting are provided in Appendix 6.

Referred specimen. SDSNH 24584, a left humerus (Fig. 12) from the Late Mio-

cene lower member (Messinian) of the San Mateo Formation of San Diego County, 

California (SDSNH locality 3177). Th is specimen was noted but not named or de-

scribed by Chandler (1985) and Livezey (1988).

Diff erential diagnosis. Diff ers from Miomancalla wetmorei in the following char-

acteristics: ventral margin of ventral tubercle more deeply grooved; transverse liga-

Figure 12.  Referred left humerus of Miomancalla howardi (SDSNH 24584; dark outlined areas rep-

resent reconstructed areas obscured by repair). A posterior view B dorsal view C anterior view D ven-

tral view E proximal view F distal view. Anatomical abbreviations: bs brachialis scar c caput cg capital 

groove d deltopectoral crest dc dorsal condyle dsp dorsal supracondylar process dst dorsal supracondylar 

tubercles fp fl exor process hs humerotricipital sulcus pf1 primary pneumotricipital fossa ps pectoralis 

scar sc supracoracoidal crest ss scapulotricipital sulcus tc tricipital crest tf tricipital fossae tls transverse 

ligament sulcus vc ventral condyle vst ventral supracondylar tubercle vc ventral condyle vst ventral 

supracondylar tubercle vt ventral tubercle.



Taxonomic revision and phylogenetic analysis of the fl ightless Mancallinae (Aves, Pan-Alcidae) 25

ment furrow deeper, with lateral lip extended farther medially; capital groove wider, 

and fl atter; dorsa  l supracondylar process less dorsally projected; groove between dor-

sal supracondylar process and dorsal condyle wider; ventral supracondylar tubercle 

more prominent; tubercle present proximal to dorsal condyle as in Mancalla cedrosensis 

(155:1); humerus ~20% longer (Table 2; Livezey 1988, Fig. 3A).

Anatomical description. Th e holotype specimen is preserved in a matrix of dark 

grey, highly indurated, siltstone (Fig. 10). Some elements are slightly crushed and 

many cortical bone surfaces are considerably abraded, obscuring fi ne morphological 

details in many portions of the specimen.

Elements of the skull are exposed in oblique right lateral view (Figs 10, 11). Th e 

premaxilla, maxilla, nasal, lacrimal, jugal, frontal, and squamosal are present. Addi-

tional fragments of bone adjacent to the posterior frontal may represent a portion 

of the parietal. An unidentifi ed fragment of bone protrudes from the external narial 

opening. Th e premaxilla is relatively shorter and mediolaterally compressed in compar-

ison with the only other known premaxillae referable to Mancallinae (LACM 103940; 

SDSNH 25236; Fig. 13), which resemble the more terete bills of some other Alcidae 

(e.g., Uria). Th e maxilla, which broadens anteriorly before fusion with the premaxilla, 

is complete but broken at approximately its midpoint. As in many alcids (e.g., Cep-

phus, Alca) the nasal contacts the maxilla at ~45° angle. Th is angle is ~60° in the puffi  ns 

and auklets (i.e., Fratercula, Cerorhinca, Aethia, and Ptychoramphus). As in Pinguinus, 

and in contrast to other alcids, the lacrimal appears to be directed ventrally rather than 

posteroventrally. However, crushing of the skull may have changed the relative orien-

tation of elements and it is possible that distortion is responsible for this condition. 

Th e jugal is preserved in contact with the mandible. Fusion between the jugal and the 

jugal process of the premaxilla is visible. Th e frontal is distorted by crushing and most 

morphological details obscured in this element. Th e outline of the right orbit is visible, 

but is deformed by ventrolateral displacement of the lateral margin of the frontal. Th e 

frontal bears a robust orbital rim as in Uria, Miocepphus, Alle, Alca, and Pinguinus.
Th e mandible is preserved in right lateral view (Figs 10, 11). Th e mandibular sym-

physis is elongate as in Uria and Fratercula. Th e mandibular rami are fused along a rela-

tively shorter distance in some alcids (e.g., Alle). Th e proximal and distal ends of the 

mandible are dorsoventrally expanded, similar to the condition in Alca and Pinguinus. 
A pair of small posterior mandibular fenestrae is present as in other known Mancal-

linae mandibles (LACM 103940; SDSNH 25236; Fig. 13), Fraterculini Storer, 1960, 

and some charadriiforms (e.g., Stercorarius longicaudus Vieillot, 1819).

At least two cervical vertebrae are partially exposed on the surface of the slab 

(Fig. 10). Fine morphological details are obscured by matrix and the poor preservation 

of the vertebrae. One vertebra resembles the axis, but positive identifi cation is hindered 

by matrix and damage to the element. Th e other is a cervical vertebra exposed in dorsal 

view. Mancallinae vertebrae are known only from the holotype specimens of Mancalla 

cedrosensis and Mancalla vegrandis. Comparisons with Mancalla cedrosensis are not pos-

sible because only a single thoracic vertebra is preserved in the holotype specimen. Th e 

shape of the dorsal surface of the cervical vertebrae of Miomancalla howardi is consist-
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Figure 13.  Skull of Mancallinae (SDSNH 25236). A Dorsal view of skull B Dorsal view of mandible 

C Left lateral view of skull D Left lateral view of mandible E Ventral view of skull F Ventral view of man-

dible (sketches by Michael Emerson).
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ent with that of Mancalla vegrandis. Further preparation of the holotype specimen of 

Miomancalla howardi, or discovery of additional material referable to this species is 

necessary before more details of vertebral anatomy can be described for this species.

Fragments of the sternum are preserved adjacent to the humerus in what appears 

to be ventral view (Fig. 10). Th e craniolateral process appears to point dorsally, rather 

than anteriorly as in Mancalla lucasi, although the possibility that crushing of this ele-

ment altered the relative orientation of that feature cannot be ruled out. Other mor-

phological details are obscured by matrix and the poor preservation of the sternum.

Th e holotype specimen preserves the proximal end of the right humerus in poste-

rior view (Fig. 10). In addition to the head of the humerus, which is slightly crushed, 

the outline of the proximal half of the humeral shaft is visible as an impression in 

matrix. A complete left humerus (SDSNH 24584; Fig. 12) is referable to Miomancalla 

howardi based upon its similar proportions (i.e., larger than any other known Mancal-

linae; Table 2), and the fact that the ventral surface of ventral tubercle is more deeply 

grooved than in any other alcid. Th e ventral surface of the ventral tubercle is also 

grooved in Pinguinus and Miomancalla wetmorei, but the degree of excavation of this 

groove is more pronounced in Miomancalla howardi. Th e ventral margin of the ventral 

tubercle of Mancalla is convex. Th e capital groove is relatively wider than that of other 

species of Mancallinae, and it is incised more deeply into the transverse ligament sulcus 

in anterior view than in Miomancalla wetmorei. Th e proximal end of the deltopectoral 

crest is less pronounced than in Miomancalla wetmorei. Th e distal end of the deltopec-

toral crest transitions to the shaft less abruptly than in Mancalla. Th e humeral head is 

rotated more anteriorly than in Miomancalla wetmorei, and is more similar to the con-

dition in Mancalla. As in Miomancalla wetmorei and Fratercula, and in contrast to the 

condition in Mancalla species, the supracoracoideus muscle scar broadens proximally. 

In Miomancalla howardi and Miomancalla wetmorei the ‘mancalline scar’ extends from 

a point just proximal to the junction of the bicipital crest with the humeral shaft and 

tapers to a point that meets the dorsal border of the primary pneumotricipital fossa 

(i.e., crus dorsale fossae of Baumel and Witmer 1993:99). Th e scar is relatively smaller 

in Miomancalla and Mancalla lucasi than in comparison with other Mancallinae. Th e 

scar is an excavation in all Mancallinae except Mancalla cedrosensis and Mancalla lucasi, 

in which the scar is raised in relief to the fl oor of the primary pneumotricipital fossa 

and the humeral shaft. Th e shaft of the humerus is arced more so than in Mioman-
calla wetmorei or any other known alcid, and is less dorsoventrally compressed than 

in Pinguinus. As in all alcids other than Mancalla, the dorsal supracondylar process is 

continuous with the dorsal epicondyle, rather than separated from it by a small notch. 

Th e dorsal supracondylar process is less pronounced than in Miomancalla wetmorei. A 

tubercle or papilla on the posterior side of the distal end of the humerus adjacent to 

the dorsal condyle was described by Howard (1966), who used that characteristic to 

diff erentiate between species of Mancalla that possessed the tubercle, and species of 

Miomancalla (Praemancalla sensu Howard, 1966) that did not posses it. Th e tubercle 

is present in Miomancalla howardi. As with all Mancallinae, the anterior surface of 

the ventral condyle is rounded, rather than fl attened as in all other Alcidae. Rounded 
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fossae are present at the proximal ends of the humerotricipital and scapulotricipital 

grooves. Th at character cannot be evaluated in Miomancalla wetmorei or Mancalla cali-

forniensis owing to damage to the holotype specimens of those species and current lack 

of referable specimens. Th e fl exor process extends distal to the ventral condyle as in all 

Mancallinae and Pinguinus.

Th e left carpometacarpus is preserved in dorsal view (Fig. 10). Although hundreds 

of Mancallinae carpometacarpi are known from Pliocene marine deposits in Califor-

nia, the holotype specimens of Miomancalla howardi and Mancalla cedrosensis are the 

only associated specimens that allow for species-level referral of carpometacarpi. Th e 

carpometacarpus of Miomancalla howardi is larger than that of Mancalla cedrosensis 

(~23%; Table 3; Howard 1971), and displays the distal elongation of metacarpal I that 

is characteristic of Mancallinae. Th e abraded preservation of this element limits further 

comparisons.

Th e pelvis is exposed in dorsal view (Fig. 10). Comparisons within Mancallinae 

are limited to Mancalla vegrandis. As in all alcids the anteroposterior length of the 

pelvis is greater than two times the mediolateral width across the antitrochanters. Th e 

relative length of the pelves of other charadriiforms is anteroposteriorly shorter. Th e 

proximal end of the preacetabular ilium is wide as in Mancalla vegrandis and most 

alcids (e.g., Brachyramphus). Th e distal end of the preacetabular ilium narrows more 

so than in Mancalla vegrandis. As with Mancalla vegrandis the antitrochanteral sulcus 

does not extend proximally to contact the antitrochanter. Th e dorsal iliac spine has a 

pointed tip as in all alcids other than Aethia and Ptychoramphus, in which the end of 

the spine is blunt.

Th e distal ends of both tibiotarsi are missing or embedded in matrix (Fig. 10). 

Th e poor preservation of these elements limits comparisons with the smaller holotype 

tibiotarsi of Mancalla cedrosensis to size (~26% larger; Table 3; Howard 1971).

Th e right femur is exposed in posterolateral view along the edge of the block but is 

severely abraded: however, the left femur is well-preserved and exposed in anterior view 

(Fig. 10). Th e femur is robust and less sigmoidal in shape in comparison with the fem-

ora of extant alcids such as Alle or Uria, resembling the condition in Mancalla lucasi 

and Mancalla cedrosensis, the only other Mancallinae from which the femur is known. 

Th e intercondylar sulcus is relatively broader and more well-defi ned proximally than 

that of Mancalla lucasi and Mancalla cedrosensis. As in Cepphus, Brachyramphus, and 

Synthliboramphus, the distally extending and anteriorly projected crest of the femoral 

trochanter is convex in shape. Th is feature is fl attened (e.g., Alca and Uria) or concave 

(e.g., Fratercula and Cerorhinca) in other alcids. Th e femoral head appears relatively 

smaller in comparison with this element in Mancalla cedrosensis and Mancalla lucasi. 
Th e length of the femur is greater than in Mancalla cedrosensis and Mancalla lucasi 

(Table 3; Howard 1971).

Th e left tarsometatarsus is preserved in anterior view (Fig. 10). Th e anterior sur-

face of the shaft is deeply grooved as in Mancalla cedrosensis and Fratercula. Associated 

specimens with tarsometatarsi that would allow for referral of isolated tarsometatarsi 

to species are not currently known from other Mancallinae. Th e outlines of trochlea 
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are visible but the distal end of the element is too badly abraded to discern fi ne mor-

phological details.

Phylogenetic results

Owing to the incomplete and fragmentary preservation of most Mancallinae speci-

mens referable to species, preliminary analysis of the systematic relationships of Man-

calla resulted in an unresolved polytomy among Alcidae sub-clades (i.e., relationships 

between Mancallinae, Cepphus, Brachyramphus, Synthliboramphus, Alcini, and Frater-

culinae (contents = Fraterculini Storer, 1960 + Aethiini Storer, 1960) unresolved at the 

base of a monophyletic alcid clade (results not shown). Two additional phylogenetic 

analyses were performed to investigate the position of Mancallinae within Charadrii-

formes, and the interrelationships of Mancallinae species. Th e primary phylogenetic 

analysis included a Mancallinae supraspecifi c terminal (SST) constructed by combining 

scorings from 19 Mancallinae specimens (including all holotype material; Appendix 

4). Th e referral of all Mancallinae specimens used to construct the SST was evaluated 

based upon the unambiguously optimized apomorphies listed in the diagnosis section 

for Mancallinae above. Note that due to damage or missing elements in Mancallinae 

holotype specimens, fi ve of the specimens used to construct the Mancallinae supraspe-

cifi c terminal preserve morphological data not preserved by the holotype specimens, 

thus providing a more compete picture of morphological variation in Mancallinae than 

if only the holotype specimens were analyzed. Th e results of the fi rst analysis were used 

to constrain the topology of trees accepted during a secondary tree search in which the 

species-level relationships of Mancallinae were evaluated.

Th e primary combined phylogenetic analysis of the cladistic matrix including a 

Mancallinae SST resulted in two most parsimonious trees (MPT’s) of 15,974 steps 

(Fig. 14; CI: 0.38; RI: O.50; RCI: 0.19). Additional analyses performed with all char-

acters unordered did not result in topological diff erences, or an increase in the number 

of MPT’s recovered. Pan-Alcidae is recovered as the sister to Stercorariidae, a result that 

is congruent with the results of previous molecular based analyses (Ericson et al. 2003; 

Paton et al. 2003; Th omas et al. 2004; Paton and Baker 2006; Baker et al. 2007), but 

confl icts with previous morphology-based analyses (Strauch 1978; Björklund 1994; 

Chu 1995, 1998; Chu et al. 2009; Livezey 2009, 2010; Mayr 2011). Alcidae and 

Stercorariidae have not been recovered as sister taxa in any previous morphology based 

analysis, suggesting that molecular sequence data is solely responsible for this hypoth-

esis. Th ere is, however, morphological character support for this clade (Table 4). Th e 

combined analysis estimate of relationships among the Alcidae crown clade is congru-

ent with the results of recent analyses of molecular sequence data (Th omas et al. 2004; 

Paton et al. 2003; Baker et al. 2007; Pereira and Baker 2008), except that Synthliboram-
phus is placed at the base of Alcinae, rather than as the sister to Alcini (Fig. 14). Howev-

er, the parsimony analysis by Pereira and Baker (2008) also recovered Synthliboramphus 

at the base of Alcinae in one of two most-parsimonious topologies. Th e positions of 



N. Adam Smith /  ZooKeys 91: 1–116 (2011)30

Figure 14.  Results of primary phylogenetic analysis including the Mancallinae SST (2 MPT’s; TL: 

15,974; CI O.38; RI O.50; RCI 0.19). Bootstrap values (>50%) are displayed above nodes, and Bremer 

support values are displayed below nodes.

other species (e.g., Alca + Pinguinus), and sub-clades in Alcidae (e.g., Fraterculinae + 

Alcinae) are consistent with the results of recent molecular-based analyses (Baker et al. 

2007; Pereira and Baker 2008) with dense taxonomic sampling for Alcidae. Th e only 

prior morphology-based analyses with suffi  cient taxonomic sampling for comparison 

to these results, those by Strauch (1985) and Chandler (1990a), resulted in topologies 

that strongly confl ict with more recent hypotheses of alcid relationships in that they 

do not support a traditional Fraterculinae (i.e., monophyly of Fraterculini + Aethiini). 
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Th e Aethiini (i.e., Ptychoramphus + Aethia) are placed basal to the Alcinae (Alca + Pin-

guinus + Cepphus + Brachyramphus + Synthliboramphus), rather than as sister to the Fra-

terculini (i.e., Cerorhinca + Fratercula) in the topology of Strauch (1985). Although the 

work by Chandler (1990a) represented an increase in the number of characters scored 

for Alcidae, the results of that analysis placed Alle alle and Cepphus in a clade with the 

Fraterculini, rather than in Alcinae. Th e combined analysis, as well as previous analyses 

(Watada 1987; Moum et al. 1994; Friesen et al. 1996; Th omas et al. 2004; Baker et al. 

2007; Pereira and Baker 2008) strongly support monophyly of a Fraterculinae clade 

consisting of Ptychoramphus, Aethia, Cerorhinca, and Fratercula, and the sister-group 

relationship between Fraterculinae and Alcinae as defi ned here (Fig. 14).

Only the systematic position of Alle alle Link, 1806 remains unresolved within 

Alcini (Fig. 14). Th e systematic position of Alle alle is potentially the most contentious 

issue within alcid systematics, as it has been recovered as the sister to Alca + Pinguinus 
(Moum et al. 1994, 2002; Baker et al. 2007), sister to Alca + Pinguinus + Uria (Strauch 

1985), sister to Uria (Th omas et al. 2004; Pereira and Baker 2008), sister to Fraterculi-

nae (Chandler 1990a), and sister to Cepphus + Aethia + Brachyramphus (Chu 1998). 

Resolution of this issue will likely require a comprehensive analysis of alcid relation-

ships including dense taxonomic sampling of extinct Alcidae.

Mancallinae is placed as the sister taxon to all other Alcidae (i.e., placed outside of 

crown clade Alcidae; Fig. 14). Th is result is consistent with the only previous analysis 

that included Mancallinae (Chandler 1990a). Th e clade composed of crown Alcidae 

+ Mancallinae is therefore designated Pan-Alcidae. Th e monophyly of Pan-Alcidae is 

supported by fi ve unambiguously optimized morphological characters with a CI = 1.0 

(UOMC; Table 4).

Th e combined analysis recovered relationships among the 29 charadriiform out-

group taxa that are largely congruent with prior molecular-based analyses of the clade, 

Table 4. Unambiguously optimized morphological characters with a CI of 1.0 supporting alcid clades in 

the resultant phylogenetic tree (Fig. 15). Character numbers from Appendix 3 are followed by character 

state symbols (e.g., 23:0 = character number 23, state 0). ‘*’ indicates selected locally optimized apomor-

phies with a CI of < 1.0.

Clade Character numbers and states that support monophyly

Pan-Alcidae + Stercorariidae *63:0; *124:1; *190:1; 315:1; 343:1

Pan-Alcidae 35:0; 38:1; 75:1; 77:1; 162:1 

Alcidae (crown clade) 68:1; 153:1; 172:1

Alcinae 49:1; 270:1; 281:1

Alcini 185:1; 237:1; 239:1; 274:1

Fraterculinae *10:1; *13:0; *52:1; *67:1; *72:1

Fraterculini 29:1; 35:1; 40:1; 63:1; 112:0; 275:1; 286:1; 287:1

Aethiini 11:1; 86:0; 94:1; 201:1

Mancallinae 104:2; 120:1; 139:1; 140:1; 148:1; 150:1; 183:0; 184:1

Mancalla *130:1; 137:1
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but do not support previous morphology-based results. Larus and Hydrophasianus (i.e., 

gulls and jacanas) are recovered as more closely related to one another than either 

are to Charadriius (i.e., plovers), as in the results obtained by Hackett et al. (2008). 

Also consistent with the results of prior molecular analyses (Ericson et al. 2003; Pa-

ton et al. 2003; Paton and Baker 2006; Baker et al. 2007), Alcidae + Stercorariidae is 

placed as the sister to Laridae + Sternidae + Rynchopidae. In contrast to the combined 

analysis results presented herein and recent molecular based results, the results of the 

phylogenetic analyses of morphological data by Livezey and Zusi (2006, 2007) and 

Livezey (2009, 2010) place Alcidae as the sister taxon to Stercorariidae + Rynchopidae 

+ Laridae. However, taxon sampling for Alcidae was limited to Uria in the analysis of 

Livezey and Zusi (2006, 2007), and Alcidae was included as a single, taxon level termi-

nal in the analyses of Livezey (2009, 2010) and Mayr (2011). Th e morphology based 

phylogeny of Mayr (2011) placed Alcidae in a polytomy with Dromadidae, Stercorari-

idae, and a clade comprising Laridae + Sternidae + Rynchopidae. Th e results of the 

combined analysis are congruent with recent molecular-based analyses, which place 

Lari (e.g., alcids, gulls, and pratincoles) as the sister to Scolpaci (e.g., sandpipers and 

curlews), and place Charadri (e.g., plovers), at the base of Charadriiformes. Th is hy-

pothesis contrasts with morphology-based results (Björklund 1994; Chu 1995), which 

were the result of parsimony-based re-analyses of the compatibility analysis of Strauch 

(1978). In the topology recovered by Björklund (1994) the Charadri and Scolpaci are 

placed in an unresolved polytomy basal to the Lari, whereas the Lari and Charadri 

are placed in an unresolved polytomy basal to the Scolpaci in the topology recovered 

by Chu (1995). Th e morphology based analyses of Livezey (2009, 2010) and Mayr 

(2011) recover Scolpaci as an outgroup to a Charadri + Lari clade. Th e contents of 

Charadri, Scolpaci, and Lari estimated by the combined analysis are consistent with 

the composition of those clades recovered in prior molecular-based phylogenetic analy-

ses (Sibley and Ahlquist 1990; Paton et al. 2003; Ericson et al. 2003; Paton and Baker 

2006; Baker et al. 2007), supporting the monophyly of Charadri, Lari, and Scolpaci. 

An additional combined analysis was performed in which the tree was a priori rooted 

with the Scolpaci clade (i.e., Hydrophasianus, Tryngites, Numenius, and Bartramia) to 

mimic the phylogenetic results of Livezey (2009, 2010) and Mayr (2011). Th is alterna-

tive rooting scheme did not aff ect relationships recovered among Alcidae or Lari spe-

cies and clades, between Alcidae and Stercorariidae, or between Mancallinae and other 

alcids (results not shown).

Also of interest is the placement of Rynchops (i.e., skimmers). Recent molecular 

analyses recovered Rynchops as the sister to Laridae (Paton et al. 2003; Baker et al. 

2007) or sister to Sternidae (Paton and Baker 2006). Th e morphology-based analy-

ses by Chu (1995, 1998) placed Rynchops as the sister to Sternidae + Laridae + Ster-

corariidae. Th e results of the combined analysis place the Black Skimmer Rynchops 

niger Linnaeus, 1758 as the sister taxon to the White Tern Gygis alba Sparrman, 1786. 

Considering the accepted placement of Gygis alba in Sternidae (American Ornitholo-

gists’ Union 1998, Brigde et al., 2005), this result would suggest Sternidae paraphyly. 

Although, this result is not entirely novel because an alternative hypothesis also places 
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Gygis outside Sternidae, as the sister to Laridae + Sternidae (Baker et al. 2007). How-

ever, denser taxonomic sampling of Rynchopidae, Sterndidae, and other Charadrii-

formes may resolve this issue in the future.

Anous (i.e., noddies) was recovered as the sister to Sternidae + Laridae + Ryn-

chopidae in the combined analysis, a placement consistent with the molecular-based 

results reported by Baker et al. (2007), and in confl ict with the morphology-based 

results obtained by Chu (1998), which place Anous as the sister to Stercorariidae. Th e 

only study with dense taxonomic sampling of terns and noddies (Bridge et al. 2005) 

included a single larid (Larus delawarensis Ord, 1815) as an outgroup taxon, but placed 

Anous basally in Sternidae. Resolution of the systematic affi  nities of Anous will likely 

require denser taxonomic and character sampling across Laridae, Sternidae, Rynchopi-

dae, Anous, and other non-Lari charadriiforms.

Th e secondary phylogenetic analysis, which evaluated the interrelationships among 

Mancallinae resulted in two MPT’s of 15,971 steps (Fig. 15; CI: 0.37; RI: O.51; RCI: 

0.19). Binary characters are interpreted as ambiguity (i.e., treated the same as ‘?’ scor-

ings) when they are scored as polymorphic (e.g., 0&1 scorings), explaining the shorter 

tree length of the secondary analysis as compared to the primary analysis including 

the Mancallinae SST. Th e monophyly of Mancallinae is supported by eight UOMC’s 

(Table 4). Miomancalla wetmorei and Miomancalla howardi are placed as sister taxa, 

and Miomancalla monophyly is supported by three locally optimized morphological 

characters (LOMC; 105:0; 113:1; 134:1). Miomancalla is placed as the sister taxon 

to Mancalla. Mancalla monophyly is supported by one UOMC (137:1) and an ad-

ditional LOMC (130:1). Th e placement of Mancalla californiensis as the sister taxon of 

Mancalla cedrosensis is supported by one UOMC (123:0), and an additional LOMC 

(109:1). Mancalla vegrandis and Mancalla lucasi are placed as successive outgroups to 

the clade composed of Mancalla californiensis and Mancalla cedrosensis (Fig. 15).

Discussion

Th e taxonomic revision and description of new Mancallinae species herein confi rms 

previous estimates of high diversity in Mancallinae (Howard 1970; Olson 1981; Chan-

dler 1990a), and in combination with the phylogenetic results of the combined analy-

sis, provide a new context for the interpretation of the evolutionary success of this 

lineage of fl ightless wing-propelled divers. Similar to the hypothesized independent 

evolution of fl ightlessness in penguins and plotopterids (Smith 2010), the placement 

of Mancallinae as the sister taxon to crown Alcidae suggests that fl ightlessness evolved 

independently in the Mancallinae and Pinguinus lineages, making the many osteo-

logical characteristics shared between these taxa an even more compelling example of 

morphological convergence. Phylogenetic support for the monophyly of Miomancalla 

and Mancalla also provides further contextualization for the interpretation of mor-

phological diff erences between these sister taxa. Although known diversity is higher 

for Mancalla, there is an apparent trend towards decrease in size for more derived 
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Figure 15.  Results of secondary phylogenetic analysis of Mancallinae inter-relationships (2 MPT’s; TL: 

15,971; CI O.38; RI O.51; RCI 0.19). Bootstrap values (>50%) are displayed above nodes, and Bremer 

support values are displayed below nodes.

members of the clade, with the larger Miomancalla and Mancalla lucasi placed basally 

in the resultant topology (Fig. 15). Although it is tempting to infer large body-mass as 

the ancestral state for Pan-Alcidae, the reconstruction of this character is ambiguous 

according to the phylogenetic results, and there is an ~25Ma gap in the fossil record 
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between the oldest known fossil alcid and the oldest Mancallinae fossils. Th e most 

important contributing factor regarding the ambiguity of ancestral states within Pan-

Alcidae is the incompleteness of the early alcid fossil record. Although an abundance of 

taxa are known from the Miocene and Pliocene, only a single fragmentary alcid fossil 

is known form the Eocene (Chandler and Parmley 2002). Th e only Oligocene fossils 

that are currently referred to Alcidae are two fragmentary and isolated specimens from 

the Iwaki Formation in Japan (Ono and Hasegawa 1991). Eocene and Oligocene lo-

calities and collections should be targeted to increase knowledge of early diversity and 

ancestral states within Pan-Alcidae.

Although impressive with regard to the quantity of taxa sampled (n = 242) and 

the number of morphological characters scored for those taxa (n = 1107), comparisons 

with the results of a recent morphology based analysis of Charadriiformes (Livezey 

2009, 2010) and the results of this study are limited to relationships among outgroup 

charadriiforms because Alcidae was included only as a suprageneric taxon. With re-

spect to relationships among major charadriiform clades, some of the results of Livezey 

(2010) are admittedly in confl ict with a growing consensus of molecular results based 

upon a variety of methods (e.g., parsimony, Bayesian) and sampling schemes (mi-

tochondrial and nuclear DNA sequences). For example, although the placement of 

Charadri in a derived position within Charadriiformes to the exclusion of other clades 

(Livezey 2010) is in agreement with some previous hypotheses (Strauch 1978; Sibley 

and Ahlquist 1990; Christian et al. 1992; Björklund 1994; Chu 1995; Th omas et al. 

2004; Livezey and Zusi 2007), these hypotheses are in contrast with the results of more 

recent multigene molecular based hypotheses that recovered Charadri in a more basal 

position. (Ericson et al. 2003; Paton et al. 2003; Paton and Baker 2006; Baker et al. 

2007; Fain and Houde 2007; Hackett et al. 2008). Th ere exists no metric with which 

to choose between the contrasting results of those many analyses, and thus systematic 

relationships between major clades of Charadiirformes remain somewhat uncertain. 

However, the combined analysis results reported herein represent the most inclusive 

analysis to date with respect to variety of phylogenetically informative data sampled.

Referral of fossils to species level

Referral of specimens to named species, or recognition of new species, based solely 

upon size, or provenience, or age, or any combination of those three criteria, run the 

risk of incorrectly assigning specimens to species, or incorrectly assessing species diver-

sity (Norell 1989; Stewart 2002b; Nesbitt and Stocker 2008; Bell et al. 2010). To avoid 

the possibility of recognizing two or more fossil species based upon diff erent skeletal 

elements of the same species, recognition of new species must be predicated upon di-

agnoses or diff erentiation from previously named species within a taxon (Appendix 1). 

Occurrence within the same deposit or deposits of similar age is not considered strong 

evidence that fossils represent the same taxon. Similarly, a lack of recorded occurrences 

of a fossil taxon within a deposit or deposits of a particular age does not preclude the 
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possibility that a taxon may have been extant during the time of deposition. For exam-

ple, if the holotype specimen of a species is an isolated humerus, then only associated 

specimens with humeri consistent with that of the holotype specimen allow for initial 

referral of additional skeletal elements. When previously recognized holotype speci-

mens consist of isolated elements, isolated material consisting of elements other than 

the holotype element cannot be referred to the species level until associated specimens 

are discovered that facilitate such referral. Although these criteria do not preclude the 

possibility that cryptic species may lead to underestimation of species diversity (see 

Stewart 2002b, 2007), these criteria do avoid overestimation of diversity and incorrect 

assignment of specimens that can result from less rigorous methods (i.e., size, pro-

venience, or age based methods) of specimen referral and species recognition. In the 

case of Mancallinae remains, there is little doubt that hundreds of isolated fossils are 

referable to that clade; however, to avoid future taxonomic confusion, referrals should 

only be made based upon the criteria outlined above. Th e morphological diff erences 

between Mancallinae holotype and referred specimens described and phylogenetically 

optimized herein provide a basis for the potential apomorphy-based referral of hun-

dreds of additional isolated Mancallinae remains, which will facilitate future detailed 

study of interspecies morphologic and size variation in Mancallinae.

Flightlessness and convergence

Th e etymology of Mancalla (mancus-from the Latin for crippled or lame, and ala 

from the Latin for wing; Brown 1956) refl ects an antiquated view of fl ightlessness. 

Th e fl ightless condition observed in ostriches and some rails for example, in which 

the pectoral elements are diminished in size, has been attributed to lack of predatory 

pressures and energy conservation strategies (Livezey and Humphrey 1986; McNab 

1994). Th e fl ightless condition observed in penguins, plotopterids and some auks (i.e., 

Mancallinae and Pinguinus) refl ects specialization for wing-propelled diving in the 

form of a functional ‘trade-off ’ between aerial and sub-aqueous fl ight (Storer 1960; 

Olson and Hasegawa 1979; Bengston 1984; Livezey 1988; Habib 2010). Th is extreme 

specialization for wing-propelled diving results in characteristics that are shared not 

only among fl ightless alcids, but also with penguins and plotopterids. It was the out-

ward resemblance of Spheniscidae to the familiar Great Auk Pinguinus impennis of the 

northern Atlantic Ocean that prompted sailors who fi rst encountered Spheniscidae in 

the southern hemisphere to call them penguins (Olson and Lund 2007). Osteological 

characteristics shared between fl ightless alcids and penguins include decrease in range 

of motion and shortening of the distal wing elements in comparison with volant alcids 

(Raikow et al. 1988; Fig. 16), distal elongation of metacarpal one (Fig. 17), arced or 

curved wing elements (Fig. 1), an increase in the size of the tricipital crests of the distal 

humerus (Fig. 1), and a deeply grooved ventral margin of the ventral tubercle (Fig. 1). 

Mancallinae share additional convergent characteristics with Spheniscidae such as dor-

soventral expansion of the omal extremity of the furcula, and deeply incised lateral 
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Figure 16.  Wing elements of fl ightless and volant auks depicting decreased range of motion and short-

ening of distal wing elements. Elements not to scale and degree of fl exion estimated based on manual 

articulation of specimens: A Mancalla (composite LACM 154560) B Pinguinus impennis (composite 

USNM 346387) C Alca torda (NCSM 20502). Anatomical abbreviations: c carpometacarpus h humerus 

r radius u ulna.

sternal notches (Fig. 9). Although the functional signifi cance of these modifi cations is 

not precisely known, the demands of wing-propelled pursuit diving for fi sh involving 

powered up-strokes and down-strokes likely played a role in the evolution of the con-

vergent morphological characteristics shared by fl ightless alcids and penguins.

One characteristic that is unique to Mancallinae among all known fl ightless birds, 

is the shorter length of the ulna compared with that of the carpometacarpus (180:1). 

In most birds these proportions are opposite of that observed in Mancallinae, with the 

ulna being longer than the carpometacarpus. Th ree associated Mancallinae specimens 

(LACM 107028; SDSNH 77966), including the holotype specimen of Mancalla ce-
drosensis (LACM 15373) display this characteristic. Statistical analysis of osteological 

proportions of fl ightless alcids quantifi ed the dorsoventral compression of wing ele-

ments and shortening of distal wing elements, but surprisingly, Livezey (1988) did not 

mention the unique relationship between the lengths of the ulna and carpometacarpus. 

A survey of the proportions of distal wing elements among extinct and extant birds was 

conducted to assess the distribution of this character state. Th e only other birds that 

are known to share this characteristic are several species of hummingbirds (e.g., Pha-

ethornis pretrei; see Mayr 2004, Table 1). Th e precise functional signifi cance of having 

a longer carpometacarpus than ulna would require detailed functional morphological 

study, but given the extreme pectoral specialization of both Mancallinae and Trochi-

lidae, and the need of both of these taxa to produce thrust on both up-strokes and 

down-strokes, it seems reasonable to postulate that the increased dependence on thrust 

generated from primary feathers attached to the carpometacarpus (Chai 1997) may 

play a role in this osteological modifi cation. Although the primaries of Mancallinae 

would likey have been much shorter than those of Trochilidae, water is a considerably 
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Figure 17.  Comparison of charadriiform and sphenisciform carpometacarpi.  A Anous minutus (USNM 

622415) B Cerorhinca monocerata (USNM 620641) C Pinguinus impennis (USNM 623465) D Mancalla 

cedrosensis (LACM 15373) E Eudyptula minor (TMM M-931). Anatomical abbreviations: aII:1 articu-

lation of digit II phalanx 1 ct carpal trochlea ep extensor process mc1 fi rst metacarpal mc2 second 

metacarpal mc3 third metacarpal.
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more dense fl ight medium with diff erent functional requirements than those for aerial 

fl ight (Habib 2010). Interestingly, this characteristic is not known in any extinct or 

extant penguin (J. Clarke, pers. com.).

Th e relatively large size of Pinguinus and some Mancallinae as compared to other 

alcids (Livezey 1988) may be linked with fl ightlessness, because the decreased buoy-

ancy of large body size confers an advantage to piscivorous predators (Sparks and Soper 

1987). Additionally, because these diving birds likely spent the majority of their time 

in the water (i.e., fl ightless, and came ashore only to breed), the thermal constraints 

imposed on them are decreased by large body size (Furness and Burger 1988). Further-

more, because Mancallinae were fl ightless, weight constraints related to maintaining 

the ability for aerial fl ight no longer restricted increases in body mass (Simpson 1946, 

Ksepka et al. 2006). Estimates of body mass in Mancallinae (excluding Miomancalla 

howardi) range from 1 kg in the smallest species (i.e., Mancalla californiensis) to 4kg in 

larger species (i.e., Mancalla lucasi; Livezey 1988). Although smaller than the 5kg mass 

estimated for Pinguinus, the estimated body mass of Mancallinae is greater than volant 

extant alcids (Livezey 1988). Miomancalla howardi is the largest known Mancallinae, 

and given the increased shortening and dorsoventral compression of wing elements of 

Mancallinae as compared to Pinguinus, it may have approached the mass of Pinguinus. 

Several Pliocene species of Alca are known to have exceeded the size of extant Alca torda 

(Olson and Rasmussen 2001; Smith and Clarke in review), and estimates based on 

fossils from Belgium indicate that at least one Pliocene Atlantic species, Alca stewarti 

Martin et al., 2001, was approaching the wing-loading threshold for fl apping-fl ight 

(Martin et al. 2001; Dyke and Walker 2005). Th is apparent trend towards increased 

size in two separate alcid lineages, known from separate ocean basins during the Mio-

cene and Pliocene is in stark contrast to the smaller body size of most extant alcids. 

Th e largest extant alcids are the Murres (Uria aalge and Uria lomvia), with an average 

body mass of 800-1000g, but the most speciose clade of extant alcids, the auklets Ae-

thia and Ptychoramphus, are among the smallest of extant alcids with a body mass of 

85-297g (del Hoyo et al. 1996). Additionally, the Mancallinae lineage and the Alca + 

Pinguinus lineage are considered the dominant seabirds in their respective oceans dur-

ing the Pliocene (Olson 1985; Olson and Rasmussen 2001). Th is temporal disparity 

in size suggests that the conditions that led to radiations of large alcids in the Pacifi c 

and Atlantic Oceans are no longer in place, and that small to moderate size may have 

played a role in diff erential survival of alcid species since the Pliocene. However, the 

largest known alcid, the Great Auk, was not driven to extinction by competition from 

smaller species or lack of ability to adapt to a changing environment, but rather was 

exterminated through human exploitation (Bengston 1984; Fuller 1999).

Body size in extant alcids has been correlated with dive depth and feeding ecology 

(Piat and Nettleship 1985; Prince and Harris 1988; Watanuki and Burger 1999), and 
larger body size in extant alcids is associated with piscivory (Bradstreet and Brown 

1985). Foraging ranges, dive depths, and prey selection are similar in extant alcids 

and penguins (Prince and Harris 1988). Little is known about the feeding strategies of 

Pinguinus (Olson 1977), and there is no direct evidence of feeding strategies in Man-
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callinae; however, the large size of many Mancallinae and morphological comparisons 

with extant piscivorous alcids suggest that Mancallinae were specialized for piscivory. 

For example, the terete bill of Mancalla (e.g., LACM 103940) may be evidence of 

piscivory, because this characteristic in alcids has been linked with that feeding strategy 

(Bédard 1969).

Geological and phylogenetic context for Pan-Alcidae

Th e oldest unequivocal fossil alcid (GCVP 5690) is from Late Eocene deposits of the 

Hardie Mine, Gordon, Georgia, USA (Chandler and Parmley 2002). Likely because 

of the incompleteness of the specimen, phylogenetic results (not shown) place this 

specimen at the base of Alcinae in an unresolved polytomy with other Alcinae clades. 

However, this placement is based upon a single shared character (equal width of the 

tricipital sulci) and the possibility that characteristics shared with Alcinae are pleisio-

morphic for Alcidae should be considered. Accordingly, this fossil is considered Alcidae 

incertae sedis, rather than Alcinae insertae sedis. Th e presence of alcids in Late Eocene 

(Chandler and Parmley 2002) is congruent with divergence estimates placing the ori-

gin of Alcidae in the Paleocene (Baker et al. 2007; Pereira and Baker 2008). Although, 

as pointed out by Wijnker and Olson (2009), those divergence estimates suff er from 

serious fl aws with respect to the taxonomic status and ages assigned to fossils used as 

calibrations.

Th e taxonomic status of all but one earlier (i.e., Mesozoic, Paleocene, and Early-

mid Eocene) fossil referred to Charadriiformes (Olson and Paris 1987; Harrison and 

Walker 1977) consists of unassociated, undiagnosable fragments (Hope 2002; Mayr 

2005, 2009). Th e earliest known defi nitive charadriiform fossil is a humerus that is 

tentatively referred to the Charadri (Hou and Ericson 2002). Although no radiomet-

ric-based date is known for this fossil, the age of Jiliniornis huadianensis Hou & Eric-

son, 2002 (IVPP V.8323) is estimated to be Middle Eocene based on biostratigraphic 

correlation (Hou and Ericson 2002). A minimum age of divergence between Alcidae 

and other charadriiforms in the Eocene suggests that the charadriiform fossil record is 

quite incomplete (i.e., extensive ghost lineages inferred based upon the fossil record).

Th e fossil record of Mancallinae ranges in age from Middle Miocene through Late 

Pleistocene (i.e., Turtonian-Calabrian; Becker 1987). Th e oldest record of Mancal-

linae may be the holotype specimen of Miomancalla wetmorei (LACM 42653) from 

the Mid-Late Miocene Monterey Formation exposed in Laguna Niguel, California; 

although, the precise stratigraphic position of the holotype locality is unknown. Depo-

sition of the Monterey Fm. spans ~10ma from 17.9-7.4 Ma (i.e., Turtonian; DePaolo 

and Finger 1991). Th e holotype specimen is from the upper part of the formation 

(Domning and Deméré 1984), and would therefore be ~12-7.4 Ma. Miomancalla how-
ardi is known from the Late Miocene San Mateo Formation, which ranges in age from 

8.7-4.9 Ma (Zanclean-Messinian; Deméré and Berta 2005). Miomancalla is replaced 

in Pliocene sediments by Mancalla, with four species known from the Capistrano, San 
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Diego, San Mateo, Niguel, Almejas, and Purisima Formations. Th e San Mateo Fm. 

records the highest diversity of Mancallinae, with Miomancalla howardi found in the 

lower unit, and Mancalla cedrosensis, Mancalla lucasi, and Mancalla vegrandis from the 

upper unit. Th e Capistrano Fm., which may be correlative with the San Mateo Fm. 

(Deméré and Berta 2005), has produced remains of Miomancalla howardi from the 

lower unit and Mancalla californiensis from the upper unit. Th e most geographically 

widespread and chronologically long-lived species (~5.0 Ma - 470 ka) is Mancalla 

lucasi, known from the Pliocene San Mateo, San Diego, and Niguel formations, and 

also from the Pleistocene Hookton Formation (Howard 1970; Kohl 1974; Domning 

and Deméré 1984).

Just as coldwater upwelling is linked to biological productivity in modern seabird 

communities (Hyrenbach and Viet 2003; Briggs et al. 1987) the Miocene appear-

ance of Miocepphus in the Atlantic Ocean and Miomancalla in the Pacifi c Ocean coin-

cides with the formation of permanent Antarctic icecaps and shallowing of the Central 

American Seaway (CAS) that resulted in steeper latitudinal thermal gradients. Th is 

resulted in intensifi ed gyral circulation of surface waters, and strengthened coastal and 

trade winds that promote upwelling (Ford and Golonka 2003). Th e Early Pliocene (~5 

- 3.5 Ma) was a time of relative climate stability and high sea level that coincides with 

the appearance of speciose alcid lineages in the Atlantic and Pacifi c Oceans (Warheit 

1992). High Mancallinae diversity in the Pacifi c Ocean, and high Alca diversity in the 

Atlantic Ocean (Olson and Rasmussen 2001; Smith and Clarke in review) coincides 

with documented cooling during the Late Miocene and Early Pliocene (~14-3.6 Ma), 

and establishment of the California current system in the Pacifi c (Zachos et al. 2008; 

Lariviere et al. 2009). Although the geology of eastern Pacifi c marine units is more 

complex than that of coeval geologic formations from the passive Atlantic margin, 

sea-level fl uctuation records indicate that the same Early Pliocene cycles of transgres-

sion and regression are recorded on western Atlantic and eastern Pacifi c coasts (Haq et 

al. 1988). Th e Middle Pliocene (~3.5–3.0 Ma) was characterized by continued global 

cooling, continued shallowing of the CAS, and the beginning of northern hemisphere 

glaciation cycles which led to increased coldwater upwelling in the Pacifi c (Bartoli et 

al. 2005; Lawrence et al. 2006). Th e emergence of the Panamanian Isthmus and the 

fi nal closure of the CAS at ~2.7 Ma resulted in increased northern hemisphere glacia-

tion, which is associated with a severe drop in sea-level (~45m) and the establishment 

of the modern profi le of the California ocean-current system on which Pacifi c alcids 

rely today (Hyrenbach and Viet 2003; Bartoli et al. 2005). Th e microfaunal record 

documents a southward shift in Atlantic and Pacifi c cold-adapted foraminiferal faunal 

regimes (Bartoli et al. 2005), separation of Pacifi c and Caribbean cocolith assemblages 

at 2.74 Ma in response to fi nal closure of the Isthmus, and an increase in thermoha-

line circulation as a result of separation of the Atlantic and Pacifi c Ocean basins. By 

~2.5 Ma the modern climate regime was in place, involving small (i.e., meter scale) 

fl uctuations in sea level associated with Late Pliocene and Pleistocene glacial cycles 

(Bartoli et al. 2005). Th e apparent response of seabirds to these climate-related changes 

in the environment was a signifi cant decrease in diversity (Warheit 1992; Olson and 
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Rasmussen 2001; Dyke and Walker 2005), because only a single species of Alca sur-

vives today in the Atlantic, and only a single specimen of Mancalla is known from the 

Pleistocene (Howard 1970; Kohl 1974,). Confi rmation of causal links between these 

climatic shifts and decreased seabird diversity will require more intense sampling of 

Late Pliocene and Pleistocene seabird fossils and evaluation of other proposed factors 

such as competition for nesting grounds with pinnipeds (Warheit and Lindberg 1988).

Known diversity of extinct Atlantic alcids now approaches that of extinct Pacifi c 
alcids (~16–19 species ranging from Miocene-Pleistocene age; Smith and Clarke in re-

view). Th e diff erential extinction of Atlantic alcids, compared with that of Pacifi c line-

ages, may be linked to climatic changes that eff ected the Atlantic and Pacifi c Oceans in 

diff erent ways. Th e alcid Pacifi c Ocean origin hypothesis is based primarily on higher 

extant diversity in the Pacifi c Ocean; however, higher extant diversity in the Pacifi c 

is not evidence of origination area, and the two oldest known alcid fossils are both 

from Atlantic deposits (Wetmore 1940; Chandler and Parmley 2002; Wijnker and 

Olson 2009). Although the lack of older fossils from the Pacifi c may simply refl ect 

a gap in the fossil record, hypotheses concerning Pacifi c ancestral origination of alc-

ids based upon proposed greater extant Pacifi c species diversity should accordingly be 

re-evaluated. However, the basal position of Mancallinae and their restriction to the 

Pacifi c basin may be viewed as support for the Pacifi c origin hypothesis for Pan-Alcidae 

(Storer 1952; Kozlova 1957; Olson 1985; Konyukhov 2002; Pereira and Baker 2008).

Regardless of the ancestral area of the clade (i.e., Atlantic or Pacifi c), hypotheses 

regarding the spread of alcids from one ocean basin to another include dispersal by ice-

free northern passage through the Bering Strait and Arctic Ocean, and southern dispersal 

across the submerged Isthmus of Panama (Olson 1985; Konyukhov 2002; Pereira and 

Baker 2008). Th ese hypotheses are based upon the assumption of dispersal across water, 

and the fi rst occurrence datum (FAD) for alcid clades, which until the discovery of an 

auk from the Eocene of Georgia, USA (Chandler and Parmley 2002), included Miocene 

examples of Mancallinae (Howard 1976), Cepphus (Howard 1982), and Uria (Howard 

1981) from Pacifi c deposits, and Miocepphus (Wetmore 1940) and Alca (Wijnker and 

Olson 2009) from Atlantic deposits. Th e ornithological literature is replete with records 

of occurrences of alcids hundreds or even thousands of miles from their normal ranges 

(see Konyukhov 2002) and records of alcid ‘wrecks’, sometimes composed of thousands 

of individuals, that were blown many kilometers inland from the sea by storms (Fisher 

and Lockley 1954; Stewart 2002a). Given the expanse of geologic time being consid-

ered (Paleocene-Recent), the possibility that such events may have led to the dispersal of 

populations from one ocean basin to another ocean basin must be considered.

As suggested by Bédard (1985), the presence of Atlantic alcids in the Eocene 

(Chandler and Parmley 2002) confi rms that the cold adapted lifestyle of some alcids 

(e.g., Uria) evolved from ancestors that were adapted to warmer (i.e., Eocene) climates. 

Th e development of basically modern ocean circulation patterns was not achieved until 

~24–20 Ma when opening of Drake Passage initiated dramatic cooling of Antarctica 

and formation of a strong Antarctic current that resulted in a switch from high pro-

ductivity in equatorial regions, to more northern coastal regions (Lear et al. 2000; Ford 



Taxonomic revision and phylogenetic analysis of the fl ightless Mancallinae (Aves, Pan-Alcidae) 43

and Golonka 2003; Liu et al. 2009). Although the southern location of the earliest 

alcid fossil locality (Georgia, USA) cannot necessarily be interpreted as support for 

a southern route of dispersal, warm-adapted alcids in the Eocene likely were not re-

stricted to a northern dispersal route.

Conclusions

Rigorous taxonomic evaluation of alcid fossil material resulted in a more refi ned pic-

ture of diversity within Mancallinae, and facilitated phylogenetic analysis of species-

level relationships within the clade. Th e combined analysis and total evidence ap-

proaches adopted herein resulted in a well-resolved and strongly supported hypothesis 

of the position of Mancallinae with respect to other Charadriiformes, and the inter-

relationships of Mancallinae species. Th e phylogenetic position of Mancallinae as the 

sister taxon to all other Alcidae (i.e., crown clade Alcidae) suggests extensive ghost 

lineages in Pan-Alcidae, provides further evidence that the charadriiform fossil record 

is quite incomplete, and demonstrates that fl ight was lost independently in at least two 

lineages of alcids. Th e stem-lineage position of Mancallinae recovered in this analysis is 

consistent with previous phylogenetic placement of this clade (Chandler 1990a), but 

contrasts with previous hypotheses of close relationship between Mancallinae and Al-

cinae (Olson 1985). Although extremely derived morphologically as a result of modi-

fi cations related to fl ightlessness, Mancallinae do possess a unique suite of characters, 

some of which are otherwise found exclusively in Alcinae or Fraterculinae, and some 

of which are otherwise known only from non-alcid charadriiforms. Although it would 

not aff ect the number of inferred origins of fl ightlessness in Alcidae, the placement of 

Mancallinae at the base of Alcinae, or at the base of Fraterculinae, would only require 

an additional 2 steps of tree length (manually calculated in MacClade; Maddison and 

Maddison 2005), and thus the position of Mancallinae recovered here may be sensi-

tive to the inclusion of additional fossil taxa with morphologies representing ancestral 

states for Pan-Alcidae. Th e hypothesized split between the lineages leading to Mancal-

linae and crown clade Alcidae raises questions about the evolution of fl ightlessness 

in charadriiforms, and the biological factors that may have led to the split between 

Alcidae and their proposed sister taxon, Stercorariidae.

Miomancalla howardi is placed as the sister taxon of Miomancalla wetmorei, and is 

the largest known species of Mancallinae. Th e large size and resemblance of the bill of 

Miomancalla howardi to that of the Great Auk Pinguinus impennis provides an exam-

ple of within-lineage convergence between two species separated by time and geogra-

phy. Th e independent acquisition of morphological characteristics in both lineages of 

fl ightless alcids (i.e., Mancallinae and Pinguinus), and the similarity of these modifi ca-

tions to those of penguins and plotopterids, strongly suggests correlation between these 

morphologies and mode of locomotion. Th e study of convergence within Alcidae may 

provide insights about the evolution of fl ightlessness in penguins, in which there are 

no known volant species.



N. Adam Smith /  ZooKeys 91: 1–116 (2011)44

Similarly diverse lineages of alcids inhabited the eastern and western coasts of 

North America during the Miocene and Pliocene. Approximately coeval Early Plio-

cene deposits in California and North Carolina record the replacement of Miocepphus 

by Alca in the Pliocene of the Atlantic, and the replacement of Miomancalla by Man-

calla in the Pliocene of the Pacifi c. Global-scale environmental perturbations such as 

increased cooling following the MMCO, may have contributed to similar scenarios 

involving species turnover in Pan-Alcidae in both ocean basins.
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Appendix 1. Review of the Mancallinae fossil record

Owing to the recognition of several Mancallinae species based upon non-diagnostic 

material, the systematics of Mancallinae required extensive revision. Th e following re-

view of the Mancallinae fossil record is presented to clarify the systematic position of 

previously named species and referred fossil material, and to justify the exclusion of 

some previously named species from the phylogenetic analysis.

Although more than 100,000 avian fossils are now known from sediments in Cali-

fornia (Miller 1946; Brodkorb 1967; Olson, 1985), the fi rst avian fossil from this state 

was not reported until 1901 when F. A. Lucas described a nearly complete left humerus 

from what were thought to be Late Miocene sediments of Los Angeles. Th at specimen 

(USNM 4976; Fig. 2) represented the fi rst of approximately 4000 fossils that are now 

referred to the fl ightless alcid taxon Mancalla (Smith, pers. obs). Mancalla californiensis 

Lucas 1901 was the fi rst of seven fl ightless alcid species recognized between 1901 and 

1981 (Table 1).

Th e second report of Mancalla remains (humerus; catalog # uncertain) came from 

the Early Pliocene San Diego Formation exposed in San Diego, California (Miller 

1933). Th e Early Pliocene age of that specimen was congruent with the revised age 

estimate for the holotype locality of Mancalla californiensis in Los Angeles (Arnold 

1906). An additional specimen, a complete right femur (UCMP 33409) from the San 

Diego Fm., was reported by Miller in 1937. Based on characteristics of that specimen 

Miller (1937) considered it a Pliocene example of a puffi  n (i.e., ‘Lunda’, Fratercula, and 

Cerorhinca), and designated the specimen as the holotype of a new taxon, Pliolunda 

diegense Miller, 1937. Additional Mancalla remains (LM 2218) were reported by Mill-

er (1946), who discussed the possibility that Pliolunda was a synonym of Mancalla, 

and erected the Family Mancallidae, separating Mancalla from Alcidae. Th e rank of 

Mancallidae later became subfamily Mancallinae (sensu Brodkorb 1967), systemati-

cally reuniting Mancalla and Praemancalla with other Alcidae.

Mounting evidence that more than one species of Mancalla was present during the 

Early Pliocene came from Howard in 1949. At that time approximately 118 specimens 

representing Mancalla were known, including two size classes of carpometacarpi from 

localities in Los Angeles, San Diego, and Corona del Mar, California. Although no 

associated remains were known, carpometacarpi were referred to Mancalla based upon 

characters such as an elongated fi rst metacarpal, a morphology considered convergent 

with that of penguins (i.e., Spheniscidae) by Howard (1949). Humeri of Mancalla 

were well known, and also display characteristics related to extreme specialization for 

wing-propelled diving considered by Miller (1946) to be convergent with those of pen-

guins, and prompting the referral of carpometacarpi exhibiting ‘penguin-like’ features.

Th e growing number of specimens from the San Diego Fm. prompted a review 

known remains of Mancalla (Miller and Howard 1949), which resulted in the recogni-

tion of Pliolunda as a junior synonym of Mancalla. However, additional remains other 

than humeri were referred solely on the basis of size, provenience, and osteological char-

acteristics correlated by those authors with fl ightlessness. No associated Mancalla remains 
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were known at the time that would allow for referral of femora to Mancalla californiensis, 

nor to facilitate comparisons between Mancalla californiensis and the holotype speci-

men of Mancalla diegense. Th e species name Mancalla diegense was emended to Mancalla 

diegensis by Olson (1981) to refl ect correct latinization of the place name San Diego. 

Although my recent re-examination of Mancalla material in the collections of UCMP, 

LACM, and SDSNH identifi ed several associated specimens within the size range of 

Mancalla diegensis as reported by Howard (1970), and that correspond with characters 

described for that taxon by Howard (1970), no associated specimens referable to Man-

calla californiensis that preserved femora were identifi ed. Th e holotype femur of Mancalla 

diegensis is, therefore, not presently comparable to Mancalla californiensis. Furthermore, 

my survey of the femora of all known alcid species revealed that the morphology of the 

femur is remarkably conserved across alcid taxa, potentially explaining Miller’s (1937) 

original proposal, that UCMP 33409 represented an extinct species of puffi  n. No char-

acteristics were identifi ed that would allow for confi dent referral of isolated femora to 

Mancalla, and Mancalla diegensis is, therefore, considered Pan-Alcidae incertae sedis.

In 1966 Howard described a new Mancallinae taxon from the Late Miocene based 

upon isolated elements including a distal humerus, carpometacarpi, a partial coracoid, 

the proximal end of a scapula, and the articular portion of a mandible. Praemancalla 

lagunenesis Howard, 1966 was considered by that author to be less specialized with 

respect to features associated with loss of aerial fl ight, and the possibility that Prae-

mancalla might represent a less derived ancestor of Mancalla was proposed. All ele-

ments referred to Praemancalla lagunenesis were isolated, so only the holotype distal 

humerus (LACM 15288) can be compared with previously recognized taxa to evaluate 

the taxonomic validity of this species. Th e holotype specimen of Praemancalla lagunen-

sis is weathered smooth, obscuring many fi ne morphological details. Although LACM 

15288 is referable to Mancallinae based upon the rounded anterior surface of the 

ventral condyle (153:0), all of the characteristics that Howard (1966) proposed as di-

agnostic for this species may be an artifact of weathering, or also are found in Mancalla. 

Praemancalla lagunensis is, therefore, considered Mancallinae incertae sedis.

Another species of alcid with characteristics interpreted as “progressing towards 

fl ightlessness” (Howard 1968:19), was described by Howard in 1968 from presumed 

Miocene sediments of Laguna Hills, California. Alcodes ulnulus Howard 1968 was de-

scribed based upon isolated elements including a complete left ulna, additional ulnar 

fragments, and a partial carpometacarpus (Howard 1968). Additional material repre-

senting this taxon was recovered from the Middle Miocene Topanga Formation along 

Oso Creek in Orange County, California (Howard and Barnes 1987), confi rming the 

Miocene age of this species. Ulnae of Alcodes are diff erentiated from those of Mancalla 

by their more gracile and rounded shafts, and projection of the olecranon farther pos-

teriorly. Although associated humeri and ulnae of Mancalla (e.g., holotype specimen 

of Mancalla cedrosensis LACM 15373) demonstrate that Alcodes is distinct from Man-

calla, the lack of associated “Praemancalla” specimens with ulnae raises the possibility 

that Alcodes is congeneric with “Praemancalla”. Until additional material is recovered 

that would allow comparison with other recognized alcid taxa, the systematic affi  nities 
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of Alcodes in Pan-Alcidae remain uncertain, and Alcodes is, therefore, considered Pan-

Alcidae incertae sedis.

Although the review by Howard (1970) expanded the known geographic range of 

Mancalla, and greatly increased knowledge of character-and size-related diff erences in the 

taxon, the description of Mancalla milleri Howard, 1970 based upon isolated material fur-

ther complicated the taxonomy of the clade. Comparisons between the holotype femur of 

Mancalla diegensis and the holotype femur of Mancalla milleri (LACM 2185) provide lim-

ited information because neither of those elements is directly comparable to the isolated 

holotype humerus of Mancalla californiensis. Additionally, my recent re-examination of 

the ~4000 fossils referred to Mancalla indicates that femoral characters cited by Howard 

(1970) are more variable within proposed size classes of Mancalla than previously recog-

nized (Smith pers. obs.). Furthermore, as stated above, femoral morphology is remarkably 

conserved in Alcidae. Although characteristics of humeri indicate that multiple species of 

Mancalla are represented by Mancalla material from the San Diego Fm., the species to 

which the holotype femora of Mancalla diegensis and Mancalla milleri belong will likely 

never be determined. Mancalla milleri is, therefore, considered Pan-Alcidae incertae sedis.

Mancalla cedrosensis Howard, 1971 was the fi rst species of Mancalla described 

from associated remains, and also the fi rst that was directly comparable to Mancalla 

californiensis (Howard, 1971). Th e holotype specimen (LACM 15373; Fig. 2) and 

additional referred specimens were recovered from Early Pliocene deposits on Cedros 

Island off  the coast of Baja California, Mexico (Howard 1971). Th e associated remains 

of Mancalla cedrosensis provided the fi rst reliable assessment of inter-element osteologi-

cal proportions for Mancalla, proportions that supported earlier size-based estimates of 

diversity among material from the San Diego Fm. proposed by Howard (1970).

Praemancalla wetmorei Howard, 1976 was described based upon a nearly complete 

humerus (LACM 42653; Fig. 2) from Late Miocene sediments in Laguna Niguel, Cali-

fornia. Several features distinguish this species from other Mancalla (see diagnoses below). 

An associated specimen (LACM 107028) was tentatively referred to Praemancalla wet-
morei by Howard (1982) on the basis of overall resemblance between the ulna of that spec-

imen and the paratype ulna of Praemancalla wetmorei. Because the paratype ulna (LACM 

32429) is not associated with the holotype humerus, and was referred only on the basis of 

its occurrence within the same deposit, the affi  nities of that specimen remain uncertain. 

Likewise, the affi  nities of additional non-humeral material (e.g., LACM 53907, 37637, 

52216) referred to Praemancalla wetmorei by Howard (1976) are uncertain, because those 

specimens are not comparable to the holotype, and therefore not referable to species at 

this time. As stated above, the name-bearing specimen of Praemancalla (i.e., Praemancalla 
lagunensis Howard, 1966) is Mancallinae incertae sedis. Based upon phylogenetic results 

and apomorphies shared with Miomancalla howardi sp. n., Praemancalla wetmorei is re-

ferred to Miomancalla, and becomes Miomancalla wetmorei (Howard 1976).

Mancalla emlongi was described based upon a complete ulna from Early Pliocene 

San Diego Fm. sediments in San Diego, California (Olson 1981). In the original de-

scription, comparisons were made between the holotype specimen of Mancalla emlon-

gi (USNM 243765) and ulnae referred to Mancalla californiensis, Mancalla diegensis, 
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Mancalla milleri, and Mancalla cedrosensis. As stated above, size and provenience alone 

do not in my opinion constitute strong evidence that material is referable to a taxon 

previously known from a particular locality or geologic formation. Mancalla diegensis 

and Mancalla milleri are Alcidae incertae sedis, and there are no known associated 

specimens that would allow for referral of ulnae to Mancalla californiensis. Although 

the holotype ulna of Mancalla emlongi can be diff erentiated from ulnae of Mancalla 

cedrosensis, the possibility exists that Mancalla emlongi is synonymous with another 

species of Mancallinae (e.g., Mancalla californiensis). Mancalla emlongi is, therefore, 

considered Mancallinae incertae sedis.

Additional material from the San Diego Fm. including a well-preserved skull and 

mandible (SDSNH 25236; Fig. 3) was tentatively referred to Mancalla emlongi by 

Chandler (1990b) on the basis of size. SDSNH 25236 and an additional skull (SDSNH 

23753) are referable to Alcidae based upon the strongly protruding cerebellar promi-

nence (35:0), and deeply incised temporal (31:1) and nasal fossae (20:1). Although 

no cranial apomorphies of Mancallinae have thus far been identifi ed, the cranium of 

Mancallinae can be diff erentiated from the skulls of all other known Alcidae: diff erenti-

ated from Fraterculinae (Aethia, Ptychoramphus, Cerorhinca, and Fratercula) by the dor-

sal position and extension of the temporal fossae; diff erentiated from Brachyramphus, 

Synthliboramphus, Alle, Miocepphus, Alca, Pinguinus, Cerorhinca and Aethia by the lack 

of supraoccipital foramina; diff erentiated from Cepphus by protrusion of the cerebellar 

prominence farther posteriorly (condition resembles that in Uria), and deeper inter-

hemispherical furrow along midline of skull; diff erentiated from Uria by depth of nasal 

fossae (deeper, distinctly bordered posteriorly, and laterally incised in Uria). Although 

these specimens cannot be referred to species at this time, two associated specimens 

comprising associated cranial and postcranial material (LACM 103940 Mancalla sp. 

and SDSNH 68312 Miomancalla howardi sp. n.) allow for comparison of SDSNH 

25236 with known cranial morphology of Mancallinae. All three of the aforementioned 

specimens possess two small caudal mandibular fenestrae (46:1; Fig. 3D), a character-

istic known only in the Fraterculini (i.e., Fratercula and Cerorhinca) among crown Al-

cidae, and also in the proposed sister taxon of Pan-Alcidae, the Stercorariidae. SDSNH 

25236 is diff erentiated from Fraterculini by the lack of dorsoventral expansion of the 

premaxilla and mandible (2:0), and by the less acute angle formed between the jugal 

and the proximo-ventrally descending bar of the nasal (6:0). SDSNH 25236 is consist-

ent in size and morphological characteristics with the skull and mandible of LACM 

103940, which is the only known Mancalla specimen with both cranial and postcranial 

elements preserved. Additionally, SDSNH 25236 lacks the dorsoventrally expanded 

mandible of Miomancalla howardi, suggesting systematic placement within Mancalla.

Although Mancalla remains were reported from Pleistocene sediments in Shiriya, 

Japan (Hasegawa et al. 1988), that material was never described, fi gured, nor systemati-

cally evaluated. My recent reexamination of the material confi rms its referral to Man-

callinae. Th e presence of Mancalla in Japan provides a considerable range extension, 

and based upon the age of the material, also confi rms that Mancalla survived into the 

Pleistocene in the eastern and western Pacifi c Ocean (Howard 1970; Kohl 1974).
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Appendix 2. Comparative material

Aethia cristatella Crested Auklet:

Skins: NCSM 6564, 6565, 6567, 16419, 17749.

Skeletons: NCSM 17749; USNM 223707, 488675, 498282, 561934, 61094.

Eggs: USNM 32126, 32128, 32131, 33167.

Aethia psittacula Parakeet Auklet:

Skins: NCSM 16423, 16424, 18387; USNM 89143, 493708.

Skeletons: NCSM 14147, 14804, 18387, 18514, 20177; NSM PO 355; USNM 

12640, 226451, 610513, 610514, 610937.

Eggs: USNM 42123, 42124, 42125, 42126.

Dissection: NCSM 20881.

Aethia pusilla Least Auklet:

Skins: NCSM 17735, 17736, 17751, 17797.

Skeletons: NCSM 17734, 17736, 17737; USNM 224009, 224010, 498285; 

NSM PO 356, 357.

Eggs: USNM 16725, 18052, 25103, 33886.

Aethia pygmaea Whiskered Auklet:

Skins: NCSM 13159; USNM 4163, 67399, 85617, 92971, 110194.

Skeletons: USNM 344544; UMMZ 204592, 224279, 224882, 224883.

Eggs: Scored from Baicich and Harrison (1997).

Alca torda Razorbill:

Skins: NCSM 298, 299, 2236, 4455, 18760, 20015.

Skeletons: NCSM 20058, 20502; USNM 18062, 347946, 501644, 502378, 

502382, 502387, 502388, 502389, 502549, 555666, 555668.

Eggs: NCSM 13447, 13448; USNM 18476, 21571, 23259.

Alle alle Dovekie:

Skins: NCSM 301, 302, 303, 304, 20111, 20630, 40060,.

Skeletons: NCSM 18374; USNM 344740, 344748, 499471, 560929.

Eggs: USNM 2634, 18490, 18491, 19053.

Dissection: NCSM 21042.

Anous tenuirostris Lesser Noddy:

Skins: USNM 486718, 486723, 486725, 486728.

Skeletons: USNM 488400, 622578.

Bartramia longicauda Upland Sandpiper:

Skins: NCSM 825, 826, 827, 828, 3093.

Skeletons: USNM 227823, 347894, 610844, 610845, 501160,.

Brachyramphus brevirostris Kittlitz’s Murrelet:

Skins: NCSM 35213; USNM 286494, 333257, 589672.

Skeletons: USNM 288086, 288087.

Eggs: USNM 47733.

Brachyramphus marmoratus Marbled Murrelet:

Skins: NCSM 5669, 5670, 18144, 18145, 18146, 18148.
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Skeletons: NCSM 18143, 18144, 18145, 18146, 18147, 18148, 18149; NSM 

PO 354, 358, 551.

Eggs: USNM 21545, 28473, 40125, 417778.

Brachyramphus perdix Long-billed Murrelet:

Skins: USNM 108952, 109985, 120704, 200411, 200412.

Skeletons: USNM 582506, 599498.

Charadrius vociferus Killdeer:

Skins: NCSM 791, 792, 17610, 18671, 19284.

Skeletons: NCSM 18305, 21905; USNM 61432, 492870, 553817, 622526.

Eggs: NCSM 13382, 13383, 13384, 13385, 13386, 13387.

Charadrius wilsonia Wilson’s Plover:

Skins: USNM 220535, 338822, 338823, 524172.

Skeletons: NCSM 5818; USNM 1250, 556652, 610801.

Eggs: NCSM 13388, 13389; USNM 43430, 43431, 43432.

Cepphus carbo Spectacled Guillemot:

Skins: USNM 40637, 102199, 406348, 424970.

Skeletons: USNM 347755, 347756, 347757.

Cepphus columba Pigeon Guillemot:

Skins: NCSM 16153, 16155,16414, 16438, 16439.

Skeletons: NCSM 18094, 18095, 18096, 18097.

Eggs: NCSM 13449; USNM 19063, 21546, 27059.

Dissection: NCSM 21075.

Cepphus grylle Black Guillemot:

Skins: NCSM 6830; USNM 331585, 393556, 394525.

Skeletons: USNM 344759, 344760, 347265, 612213, 612214.

Eggs: NCSM 7435, 13450, 13451; USNM 2578, 18494.

Cerorhinca monocerata Rhinoceros Puffi  n:

Skins: NCSM 8064, 10628, 16420, 16421, 16430.

Skeletons: NSM PO 189; USNM 557613, 557614, 561468, 620641, 620643.

Eggs: USNM 12866, 24634, 27632, 27633.

Chlidonias leucopterus White-winged Black Tern:

Skins: NCSM 11351, 11352, 11358, 11470, 11471.

Skeletons: USNM 43173, 290154, 430844, 431172, 488879.

Creagrus furcatus Swallow-tailed Gull:

Skins: NCSM 183825. USNM 115967, 115968, 131674, 543878, 543879.

Skeletons: USNM 18492, 19029, 498301.

Cursorius temminckii Temminck’s Courser:

Skins: USNM 448378, 520019, 545851, 545853, 545854.

Skeletons: 429182, 431709.

Fratercula arctica Atlantic Puffi  n:

Skins: NCSM 17824, 17825; USNM 589716, 627638.

Skeletons: USNM 18055, 18057, 18058, 224189, 621331.

Eggs: NCSM 13452; USNM 2637, 14977, 31034.



Taxonomic revision and phylogenetic analysis of the fl ightless Mancallinae (Aves, Pan-Alcidae) 63

Fratercula cirrhata Tufted Puffi  n:

Skins: NCSM 16147, 16148, 16150, 16433, 18098.

Skeletons: NCSM 17823, 18099, 18100; USNM 19449, 488748.

Eggs: NCSM 13453, 13454; USNM 16335, 12861.

Fratercula corniculata Horned Puffi  n:

Skins: NCSM 7761, 10629, 18102; USNM 610504, 612200, 499957.

Skeletons: NCSM 17835, 18083, 18388; USNM 499961, 499964.

Eggs: USNM 16329, 19706, 22052, 25095, 29216.

Dissection: NCSM 21095.

Glareola maldivarum Oriental Pratincole:

Skins: NCSM 9756, 11059, 11060, 11061, 11062.

Skeletons: USNM 19580.

Gygis alba White Tern:

Skins: NCSM 7859, 7860, 8021, 18890, 18932.

Skeletons: NCSM 16895; USNM 498081, 498415, 559583, 621328.

Hydrophasianus chiurgis Pheasant-tailed Jacana:

Skins: NCSM 10609, 11018, 11019, 11473.

Skeletons: USNM 226034, 431604, 431609, 490560, 490566.

Larosterna inca Inca Tern:

Skins: USNM 15503, 15516, 212050, 212051, 371303.

Skeletons: USNM 292869, 430271, 430375, 430580, 430625, 631761.

Larus argentatus Herring Gull:

Skins: NCSM 17738, 21188, 21444, 21462, 21791.

Skeletons: NCSM 8624, 10116, 10211, 10251, 22218.

Eggs: NCSM 5934, 13395.

Larus marinus Great Black-backed Gull:

Skins: NCSM 7376, 7861, 7863, 7941, 7992.

Skeletons: NCSM 6590, 16190, 102451; USNM 491592, 502396.

Eggs: NCSM 5968; USNM 42295, 42296, 42297.

Numenius minutus Little Curlew:

Skins: NCSM 1907, 22227, 22228, 22229, 22230.

Skeletons: USNM 347648.

Pagophila eburnea Ivory Gull:

Skins: USNM 17766, 22217, 22221.

Skeletons: NCSM 17766; USNM 344734, 491595, 491596, 491597.

Phaetusa simplex Large-billed Tern:

Skins: NCSM 22224. USNM 316370, 326609, 349836, 512940.

Skeletons: USNM 345827, 345828.

Pinguinus impennis Great Auk:

Skins: USNM 57388 (eye and mouth color scored based on Smith, 1879).

Skeletons: USNM 346387 (composite), 557975 (composite), 623465 (compos-

ite) additional series of disarticulated USNM material from the expedition to 

Funk Island (Lucas, 1890).
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Eggs: USNM 15141, 15144.

Ptychoramphus aleuticus Cassin’s Auklet:

Skins: NCSM 5666, 7222, 10624, 19137, 19140.

Skeletons: NCSM 18088; USNM 491305, 491845, 491846, 557607, 557609, 

557611.

Eggs: NCSM 7901; USNM 2353,16635, 16636.

Rhinoptilus chalcopterus Bronze-winged Courser:

Skins: USNM 117798, 216168, 437251, 448203, 460101.

Skeletons: USNM 321515.

Rhodostethia rosea Ross’s Gull:

Skins: NCSM 22222, 22223. USNM 93346, 93356, 93357, 332306, 495943.

Skeletons: USNM 491606, 491607, 491608, 491609, 491611.

Rissa tridactyla Black-legged Kittiwake:

Skins: NCSM 18072, 18073, 18074, 18075, 18076.

Skeletons: NCSM 18123, 18124, 18125, 18126.

Eggs: NCSM 13403.

Rynchops niger Black Skimmer:

Skins: NCSM 281, 282, 287, 289, 20262.

Skeletons: NCSM 4228, 6280, 6281, 7790, 7791, 9725, 19048, 19063

Eggs: NCSM 13441, 13442, 13443, 13444, 13445.

Stercorarius longicaudus Long-tailed Skua:

Skins: NCSM 8385, 10269, 11725, 17144, 17801.

Skeletons: NCSM 10269, 17801; USNM 491643, 491951, 501243.

Eggs: USNM 7789, 11692, 11694, 11681, 11699.

Stercorarius skua Great skua:

Skins: NCSM 13193, 14891, 22191, 22192.

Skeletons: NCSM 11747; USNM 488294, 488295, 560938, 576076, 623300.

Eggs: USNM 14918, 24541, 34243, 42219, 42221, 46504.

Sterna anaethetus Bridled Tern:

Skins: NCSM 4066, 6037, 6039, 6042, 6086.

Skeletons: NCSM 10268, 17085, 19073; USNM 488397, 554970, 554972, 

558277.

Sterna maxima Royal Tern:

Skins: NCSM 7213, 7294, 7614, 20050, 20668.

Skeletons: NCSM 1640, 10248, 16010, 17514.

Eggs: NCSM 2603, 2604, 5317, 13245, 13424, 13426.

Sterna niloteca Gull-billed Tern:

Skins: NCSM 242, 10461, 11469, 15044, 15046.

Skeletons: 10228, 15046, 17188, 289676, 501253, 610912.

Eggs: NCSM 8397, 8398, 8399, 9943, 9944.

Sternula superciliaris Yellow-billed Tern:

Skins: USNM 283, 682, 401268, 512943, 512944.

Skeletons: USNM 227482, 345825, 345826.
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Stiltia isabella Australian Pratincole:

Skins: USNM 279023, 405699, 405698, 405700, 405701.

Skeletons: AMNH 9599.

Synthliboramphus antiquus Ancient Murrelet:

Skins: NCSM 16146, 17742, 18089, 19143.

Skeletons: NCSM 17742, 18089, 18090; NSM PO 351, 352, 427, 428, 564; 

USNM 488688, 561926.

Eggs: USNM 16618, 27130, 27131, 28369.

Dissection: NCSM 21074.

Synthliboramphus craveri Craveri’s Murrelet:

Skins: USNM 544024, 544034, 597160, 597163.

Skeletons: SDSNH 36390, 36391, 37767.

Eggs: USNM 42144, 46625, 46627, 46628.

Synthliboramphus hypoleucus Xantus’ Murrelet:

Skins: USNM 544886, 544887, 544889, 544893.

Skeletons: USNM 19387, 291879, 345427, 345428, 500652.

Eggs: USNM 28131, 31480, 46623, 46624.

Synthliboramphus wumizusume Japanese Murrelet:

Skins: USNM 15803, 85796, 111653, 114529, 466256.

Skeletons: NSM PO 10, 353, 359; UMMZ 152355, 152356, 152357, 152358, 

152359, 152360.

Tryngites subrufi collis Buff -breasted Sandpiper:

Skins: NCSM 7621, 21581, 22225, 22226.

Skeletons: USNM 7995, 227481, 227771, 492110.

Uria aalge Common Murre:

Skins: NCSM 8074, 11188, 18115, 18992, 20551.

Skeletons: NCSM 17822, 18116, 18117, 18118, 18234.

Eggs: NCSM 5935, 5936, 13455, 13456, 13457, 13773.

Dissection: NCSM 21070.

Uria lomvia Th ick-billed Murre:

Skins: NCSM 6347, 16144, 16145, 17754, 17779.

Skeletons: NCSM 18114, 19414; USNM 344435, 561265.

Eggs: USNM 18502, 18504, 18505, 19049, 24420.

Xema sabini Sabines Gull:

Skins: NCSM 3678, 16393, 16394, 17777, 17778.

Skeletons: NCSM 17778; USNM 499111, 533882, 533905, 557605, 557606.
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Appendix 3. Morphological character list

Osteology: Characters 1–223

Integument: Characters 224–255

Reproduction: Characters 256–266

Diet: Characters 267–268

Myology: Characters 269–292

Feather Microstructure: Characters 293–344

Skull

1. Premaxilla, anterior tip: (0) decurved; (1) hooked. Th e anterior tip of the 

premaxilla is hooked ventrally in a raptorial fashion in some alcids (e.g., Alca torda). 

Th e anterior tip of the premaxilla in other alcids (e.g., Brachyramphus marmoratus) is 

decurved slightly ventrally but does not possess a hooked tip.

2. Premaxilla, dorsal margin (modifi ed from Chandler 1990b, character 17): 
(0) smooth; (1) anteriorly enlarged. While the premaxilla of most alcids is acute (e.g., 

Uria aalge) the premaxilla of some species (e.g., Alca torda) is laterally compressed, and 

enlarged anteriorly and dorsally.

3. Maxilla, fenestra adjacent to junction of maxilla and palatine: (0) absent; (1) 

present. Th e ventral surface of the distal end of the maxilla is fenestrated in some alcids 

(e.g., Cerorhinca monocerata). Th is characteristic is absent in many other alcids (e.g., 

Cepphus grylle). In life the fenestra is covered by a thin membrane. Because the fenestra 

does not serve as a passageway for muscle, tendon, or nerves, its purpose may be related 

to fl exion or weight reduction.

4. Nasal, anterior projection along the ventral surface of the premaxilla (Chan-

dler, 1990b, character 9): (0) contacting; (1) separated. Th e nasals converge beneath 

the premaxilla in some species (e.g., Uria aalge), while in other species (e.g., Fratercula 
cirrhata) the lateral nasal bars merge with the ventral premaxilla but remain separated.

5. Nasal, maxillary spine on nasal bar (Chandler 1990b, character 13): (0) short 

(i.e., <=1/2 the length of the nasal bar); (1) long (i.e., >1/2 nasal bar). A spine extends 

dorsally from the posterior maxilla and fuses with the nasal bar. In most alcids and 

other charadriiform species (e.g., Uria lomvia) the spine is only a short protuberance. 

In other species (e.g., Brachyramphus brevirostris) this spine extends more than halfway 

up the lateral nasal bar towards the frontal.

6. Nasal bar, angle with respect to jugal: (0) ~45 degrees; (1) ~60 degrees. Th e 

angle between the nasal and the jugal of most alcids (e.g., Uria aalge) is ~45 degrees, 

while in the auklets and puffi  ns (e.g., Fratercula cirrhata) this angle is around ~60 

degrees.

7. Maxillopalatine strut (Strauch 1985, character 1; Chandler 1990b, character 

16): (0) absent; (1) present. Th e maxillopalatine strut is a small projection connecting 

the maxillopalatine process to the nasal bar. Th e maxillopalatine strut, which is found 
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only in Fratercula among the Alcidae, does not appear to be homologous with those 

found in other charadriiforms (Lowe 1931; Bock 1958; Zusi and Jehl 1970; Strauch 

1978). Its presence is considered derived (Strauch, 1985).

8. Maxillopalatine process shape (Strauch 1985, character 2; Chandler 1990b, 

character 3): (0) ventrolaterally concave; (1) fl at. In most alcids (e.g., Alca torda) the 

maxillopalatine process is a rounded cuplike structure, while in Aethia, the maxillo-

palatine process is fl at.

9. Maxillopalatine process orientation (Chu 1998, character 45): (0) dorsally 

tilted; (1) ventral, fl at lying. While the maxillopalatine process of some alcids (e.g., 

Aethia pygmaea) are dorsoventrally oriented (i.e., horizontally lying), the maxillopala-

tine process of other alcids (e.g., Alca torda) are tilted such that their medial edges are 

dorsally elevated in relation to their lateral edges.

10. Maxillopalatine process, anterior end, medial margin in ventral view 

(Chandler 1990b, character 6): (0) rounded; (1) angled. In some species (e.g., Alca 

torda) the medial margin of the maxillopalatine process forms a gentle curve. Th is fea-

ture is anteriorly angled in other species of alcids (e.g., Aethia pusilla).

11. Palatine,ventral extent of the medial margin of the ventral crest relative 
to the palatine shelf (crista ventralis medialis, Baumel and Witmer 1993; Strauch 

1985, character 3): (0) does not extend beyond ventral margin of palatine shelf; (1) 

extends beyond ventral margin of palatine shelf. Th e ventral end of the ventral crest of 

the palatine does not extend as far ventrally as the ventral edge of the palatine plate in 

most charadriiforms (e.g., Alca torda). In the auklets (e.g., Aethia psittacula) however, 

it extends beyond the end of the palatine shelf (Strauch 1985).

12. Palatine, anterior margin of the medial palatal crest (crista ventralis media-

lis; Baumel and Witmer 1993; modifi ed from Chandler 1990b, character 3): (0) angu-

lar; (1) rounded. Th e anterior end of the medial palatal crest can be either rounded in 

shape (e.g., Alca torda) or angular (e.g., Cepphus carbo).

13. Palatine, posterior margin of the medial palatal crest (crista ventralis media-

lis; Baumel and Witmer 1993; modifi ed from Chandler 1990b, character 3): (0) angu-

lar (1) rounded. Th e posterior end of the medial palatal crest can be either rounded in 

shape (e.g., Cepphus carbo) or angular (e.g., Brachyramphus brevirostris).

14. Palatine, lateral margin anterior to contact with the pterygoids (angulus 

caudolateralis; Baumel and Witmer 1993; Chandler 1990b, character 2): (0) widens 

posteriorly; (1) narrows posteriorly. Th e posterior palatines (past the posterior extent 

of the maxillopalatine process) broadens before angling medially to articulate with the 

pterygoids in some species of alcids (e.g., Alca torda), while in others (e.g., Synthlibo-
ramphus antiquus) the palatines remain the same width or get narrower.

15. Palatine, posterior extension (Chandler 1990b, character 4): (0) extends to 

pterygoid articulation; (1) narrow and relatively straight before pterygoid articulation. 

Th e lateral margins of the palatines narrow to a thin medially oriented projection before 

the pterygoid articulation in some species of alcids (e.g., Synthliboramphus antiquus).
16. Vomer, anterior curvature (Chandler 1990b, character 1): (0) straight; (1) 

indented. Th e ventral edge of the anterior vomer is straight in some alcids (e.g., Brachy-



N. Adam Smith /  ZooKeys 91: 1–116 (2011)68

ramphus marmoratus), while in some species (e.g., Alca torda), the anterior end of the 

vomer curves dorsally (i.e., is dorsally concave).

17. Vomer, anterior tip shape: (0) pointed; (1) bifurcated. Th e anterior tip of the 

vomer is pointed in most alcids (e.g., Alca torda), while in some species (i.e., Cepphus 

grylle) the anterior tip of the vomer is bifurcated.

18. Lamina dorsalis, segmentation: (0) not segmented; (1) segmented. Th e lam-

ina dorsalis is an extension of the mesethmoid that lies against the ventral side of the 

frontal (Baumel and Witmer 1993). Th is osseous feature is segmented and may play 

some part in bill kinesis in alcids (e.g., Uria lomvia). Th e lamina dorsalis is fused to the 

rest of the mesethmoid in many charadriiform species (e.g., Rynchops niger).

19. Lamina dorsalis, size: (0) large; (1) small. Th e lamina dorsalis of most alcids 

(e.g., Alca torda) is a large (mesethmoid margin interrupted only by suture between it 

and the lamina dorsalis), triangular, anteriorly pointing structure with a medial crest 

, while in some species (e.g., Alle alle) it is reduced to a small (lamina dorsalis not 

continuous with margin of mesethmoid, appears to be a separate accessory structure), 

elongate point.

20. Frontal, nasal fossa, salt glands, depth (modifi ed from Strauch 1985, char-

acter 5; Chandler 1990b, character 11): (0) shallow; (1) deep. In some species of alcids 

(e.g., Alca torda) deep (i.e., fossa concave) excavations of the frontals are separated by 

a medial cranial crest, while in some alcids (e.g., Aethia psittacula) the nasal fossae are 

shallower (i.e., fl attened or convex).

21. Frontal, supraorbital rims (lateral to fossa glandulae nasalis; Baumel and Wit-

mer, 1993;modifi ed from Strauch 1985, character 5; Chandler 1990b, character 11): 

(0) absent; (1) present. Th is structure associated with the salt glands is completely 

absent in some alcid species (e.g., Brachyramphus brevirostris) while in other alcid spe-

cies (e.g., Alca torda) it is a robust, fully ossifi ed lip that follows along the entire dorsal 

outline of the orbits.

22. Mesethmoid, fenestra in nasal capsule anterior to nasofrontal hinge: (0) 

small fenestra; (1) large fenestra. In contrast with many closely related charadriiforms 

(e.g., Larus marinus) that have only a small (i.e., fenestra height <=1/3 height of sep-

tum) interorbital fenstra, alcids possess a large (i.e., fenestra height >1/3 height of 

septum) interorbital fenstra.

23. Mesethmoid, fenestra in nasal capsule anterior to nasofrontal hinge (0) 

fenestrated; (1) not fenestrated. Between the lamina dorsalis and the ectethmoid, the 

mesethmoid of some alcids (e.g., Fratercula arctica) is fenestrated. Th e mesethmoid of 

other alcids (e.g., Alca torda) is not fenestrated.

24. Foramen opthalmicum internum (Chu 1998, character 15): (0) absent; (1) 

present. Th is foramen, which punctures the interorbital septum near the junction of 

the mesethmoid and the orbit, is present in all alcids (e.g., Aethia psittacula), but is 

absent in some charardiiforms not closely related to Alcidae (e.g., Charadrius wilsonia).

25. Fonticulus orbitocranialis (Chu 1998, character 33): (0) not enclosed; (1) 

enclosed. In most alcids (e.g., Aethia psittacula) the mesethmoid does not extend dor-

sally to fuse with the ventral frontals, thus the fonticulus orbitocranialis is not entirely 
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enclosed by bone. In alcids that have a dorsally ossifi ed mesethmoid (e.g., Alca torda), 

the fonticulus orbitocranialis is a clearly defi ned foramina near the dorsal margin of 

the posterior mesethmoid.

26. Lacrimal, articulation with ectethmoid (Chu 1998, character 26): (0) oc-

cupies entire lateral margin of ectethmiod; (1) occupies only the ventral half of the 

lateral margin of the ectethmoid. In the Alcidae (e.g., Alca torda), the lateral margin 

of the ectethmoid is dorsoventrally expanded and anteroposteriorly fl attened, giving 

this element a square shape when viewed anteriorly. Th e lacrimal articulates with the 

ectethmoid along its entire lateral margin. In many other charadriiforms (e.g., Sterna 

maxima) the ectethmoid tapers laterally to a point. In these taxa the lacrimal extends 

dorsally from the medially extending ectethmoid.

27. Lacrimal, position in lateral view: (0) posteroventrally directed; (1) ventrally 

directed. With the exception of Pinguinus impennis and Rynchops niger, the lacrimal of 

all taxa examined in this study are directed posteroventrally. In contrast, the lacrimal 

of P. impennis extends ventrally. Th e condition shared by P. impennis and R. niger is 

not considered homologous here, as the cranium of R. niger is extremely derived (with 

respect to other charadriiforms).

28. Lacrimal, supraorbital process (Chu 1998, character 9(0) absent; (1) pre-

sent. Th e supraorbital process of the lacrimal (sensu Cracraft 1968), while present 

in all alcids (e.g., Cepphus grylle), is absent in many other charadriiforms (e.g., Rissa 

tridactyla).

29. Sclerotic ring, shape (from Strauch 1985, character 7; Chandler 1990b, char-

acter 18): (0) narrow, fl at ring; (1) wide conical ring with serrated inner edge. Th e 

sclerotic ring of most charadriiforms (e.g., Rynchops niger) is a fl at and narrow. Th at of 

puffi  ns (e.g., Fratercula arctica), however, is distinctly conical and has a serrated inner 

edge. Shufeldt (1889) was the fi rst to describe this condition in puffi  ns (Strauch, 1985).

30. Squamosal, zygomatic process, shape (Chandler 1990b, character 12): (0) 

short; (1) elongate. Th e zygomatic process, which extends ventrolaterally over the ar-

ticulation of the quadrate with the skull, is a short (i.e., <3× long than wide), relatively 

rounded structure in many alcids (e.g., Cepphus grylle). In some alcids (e.g., Fratercula 

arctica), this process is a long (i.e., >=3× long than wide) pointed projection.

31. Squamosal, temporal fossa depth (Chandler 1990b, character 19): (0) shal-

low; (1) deep. Th e temporal fossa is a shallow (not bordered anteriorly and posteriorly 

by a distinct lip/crest) depression in most alcids (e.g., Aethia psittacula), although, in 

the a few species (e.g., Alca torda) it is a deep (bordered anteriorly and posteriorly by a 

distinct lip or crest) excavation bordered anteriorly by the temporal crest (Baumel and 

Witmer, 1993).

32. Squamosal, temporal fossa, medial extent: (0) not medially extended; (1) 

separated by a thin fl at space; (2) separated only by a thin crest. In many alcids (e.g., 

Aethia psittacula) the temporal fossa is not expressed on the dorsal surface of the skull, 

although, in some species (e.g., Alca torda) the temporal fossa nearly converge on the 

dorsal surface of the skull. In Pinguinus impennis the temporal fossa are very deep and 

separated only by a thin crest. Ordered



N. Adam Smith /  ZooKeys 91: 1–116 (2011)70

33. Squamosal, temporal fossa, shape of medial margin: (0) narrow; (1) broad. 

In species that possess medially expanded temporal fossa (see character 32) the medial–

most extent of the temporal fossa varies in alcids from a broad, relatively ‘U-shaped’ 

curve (e.g., Alca torda) to a more pointed, medially narrowing groove (e.g., Uria aalge).

34. Supraoccipital foramina (foramen venae occipitalis externae; Baumel and 

Witmer, 1993; Strauch, 1985, character 6; Chandler, 1990b, character 14): (0) absent; 

(1) present. Supraoccipital foramina are absent in the skulls of adult Lari and most 

other groups of charadriiforms (e.g., Uria aalge); they are present in some species of 

alcids (e.g., Aethia pygmaea; Strauch, 1985).

35. Cerebellar prominence (Chu 1998, character 3): (0) strongly protruding; (1) 

weakly to moderately protruding. In contrast to charadriiforms with rounded (i.e., 

posteriorly convex) occipitals (e.g., Xema sabini) in which the cerebellar prominence 

does not protrude a great distance relative to the occipitals, the Alcidae (e.g., Cepphus 

grylle) have anteroposteriorly-fl attened occipitals, such that the cerebellar prominence 

noticeably protrudes posteriorly.

36. Foramen magnum, dorsal margin shape (modifi ed from Strauch 1978, char-

acter 19: (0) rounded; (1) pointed. Th e dorsal margin of the foramen magnum of most 

alcids (e.g., Alca torda) is rounded, while this feature in some alcids (e.g., Alle alle) is 

more pointed.

37. Secondary articulation of mandible (ala parasphenoidalis; Baumel and Wit-

mer 1993; Strauch 1985, character 4; Chandler 1990b, character 8): (0) well devel-

oped; (1) absent. Th e Lari, auklets, and puffi  ns have a well-developed secondary ar-

ticulation of the mandible (a.k.a., lateral process of the basisphenoid). Th e articulation 

is absent in the murrelets, Cepphus, Alle, and the auks. Kozlova (1957) reported the 

presence of the basisphenoid processes associated with this articulation in alcids. Bock 

(1960) reported the articulation absent in alcids, but did not report which taxa he 

examined (Strauch, 1985).

38. Quadrate (Chandler 1990b, character 10): (0) pneumatic; (1) apneumatic. 

While the medial surface of the quadrate of many charadriiforms (e.g., Rynchops niger) 
if perforated by a foramina, which leads to the pneumatic interior of the quadrate, the 

quadrate of all alcids in which this element is known (e.g., Fratercula corniculata) is 

apneumatic.

Mandible

39. Mandible, length of symphysis (modifi ed from Chandler 1990b, character 

22): (0) short; (1) long. Th e left and right rami of the mandible fuse at the anterior end 

of the mandible. Th e length of area fused can be either short (i.e., <15% of the total 

length of the mandible; e.g., Alca torda) or long (i.e., >15% of the total length of the 

mandible; e.g., Uria aalge).
40. Mandible, contact distal to symphysis: (0) non-contacting; (1) contacting. 

In most alcids (e.g., Alca torda) the mandibular rami are in contact only where fused at 
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the symphysis. In Fraterculini (e.g., Fratercula arctica) the mandibular rami, although 

not fused, remain in contact posterior to the mandibular symphysis.

41. Mandible, ventral expansion: (0) absent; (1) present. Th e mandibles of most 

alcids (e.g., Cepphus columba) are not ventrally expanded. Th e mandibles of some spe-

cies (e.g., Fratercula arctica) have a pronounced ventral expansion at the anterior end 

of the mandible (i.e., beak tip).

42. Mandible, thickening of junction between pars dorsalis and dorsal splenial 
(Chu, 1998 character 56): (0) fl at to moderate; (1) gross, forming massive longitudinal 

crista. Th e dorsomedial surface of the mandible is noticeably thickened in terns (e.g., 

Sterna maxima). In the Alcidae (e.g., Cepphus columba) and most other charadriiforms, 

the medial surface of the mandible is fl at (i.e., lateromedially compressed).

43. Mandible, mediolateral curvature: (0) laterally concave; (1) laterally convex. 

Th e mandibular rami of many alcids (e.g., Fratercula arctica) are laterally concave distal 

to the tip of the bill, while in other alcids (e.g., Alle alle) the rami are curved outward 

or laterally convex.

44. Prearticular, anterior end (modifi ed from Chandler 1990b, character 21): 

(0) forked; (1) not forked. Th e anterior-most end of the prearticular is forked (i.e.. bi-

furcates around the distal edge of the rostral mandibular fenestra) in some alcids (e.g., 

Alca torda), while in other alcids (e.g., Alle alle) the prearticular is present only ventral 

to the rostral mandibular fenestra.

45. Surangular, fenestration: (0) absent; (1) present. Th e posterior mandible in 

many charadriiforms (e.g., Larus marinus) is perforated (fenestra caudalis mandibu-

lae; Baumel and Witmer, 1993) just anterior to the lateral mandibular cotyla. Some 

charadriiforms (e.g., Charadriius wilsonia) lack this feature. Th is fenestra provides pas-

sage for a nerve, which originates inside the adductor mandibulae pars ventralis mus-

cle, and passes medially through the caudal mandibular foramen and then continues 

along the medial surface of the angular.

46. Surangular, fenestration, quantity: (0) one; (1) two. Most alcids (e.g., Cepphus 
grylle) have a single caudal mandibular fenestra, while the Fraterculini (puffi  ns; e.g., 

Fratercula arctica) and Mancallinae (e.g., Miomancalla howardi) are characterized by the 

presence of two small caudal mandibular fenestrae perforating the dorsal surangular.

47. Articular, medial articular process foramen (foramen pneumaticum articu-

lare; Baumel and Witmer 1993; Chandler 1990b, character 20): (0) absent; (1) pre-

sent. An opening in the upper surface of the processus medialis mandibulae that leads 

to pneumatic spaces in the posterior segment of the mandibular ramus is present in 

some alcids (e.g., Cepphus grylle).
48. Articular, medial articular process, shape: (0) anteroposteriorly compressed; 

(1) dorsoventrally compressed; (2) rounded point. Th e medial articular process of the 

mandible, which articulates with the parasphenoid process (Baumel and Witmer 1993, 

p. 80) in many charadriiforms, varies in shape from an anteroposteriorly-compressed pro-

jection (e.g., Cepphus carbo) to a dorsoventrally compressed projection (e.g., Alca torda).

49. Articular, medial articular process, orientation: (0) projects medially; (1) 

projects posteromedially. Th e medial articular process of the mandible points medially 
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in some alcids (e.g., Fratercula cirrhata), while in other alcids (e.g., Cepphus grille) this 

same process points more posteriorly.

50. Articular facet in ventral view, shape: (0) rounded knob; (1) anteromedial 

projection. In ventral view, the articular facet of the mandible is visible as a small, often 

rounded knob in some alcids (e.g., Alca torda). In some alcids (e.g., Cepphus grylle) this 

facet is more pointed and projects anteromedially.

51. Articular, retroarticular process (modifi ed from Chandler 1990b, character 

23): (0) absent; (1) present, Th is characteristic, although present in all alcids, is absent 

in many other Lari (e.g., Stercorarius longicaudus).

52. Articular, retroarticular process length (modifi ed from Chandler 1990b, 

character 23): (0) short; (1) long. In some species (e.g., Aethia pygmaea) the dorsopos-

teriorly projecting process of the cotyla lateralis is long (i.e., as long or longer than the 

dorsoventral height from the articular facet to the ventral margin of the mandible in 

lateral view), while in other species (e.g., Alca torda) this process is shorter.

Vertebrae

53. Atlas, fl ange on the lateral margins of the arcus atlanticus in dorsal view: 
(0) straight; (1) laterally angled. Th e posteriorly-projecting processes for articulation 

with the axis project posteriorly in most species of alcids (e.g., Uria aalge). In some 

species of alcids (e.g., Fratercula arctica) the zygapophyses angle laterally.

54. Axis, dorsal extension of neural spine: (0) short; (1) long. In posterior view, 

the neural spine of the axis in most alcids (e.g., Uria aalge) is short (i.e., less than half 

of the length of the neural spine extends above the level of the anapophyses), although 

in some alcids (e.g., Alca torda) this projection of the axis is lengthened and extends 

to a point well above the anapophyses (i.e., more than half of the length of the neural 

spine extends above the level of the anapophyses).

55. Th oracic vertebrae, hypapohyses: (alae cristae ventralis; Baumel and Witmer 

1993; modifi ed from Strauch 1985, character 14): (0) not present on any thoracic ver-

tebrae; (1) present on some thoracic vertebrae. Th e Lari and other non-alcid charadrii-

forms (e.g., Larus marinus) have poorly developed hypapophyses on their thoracic ver-

tebrae. Well-developed hypapophyses, most with bilateral fl anged wings, are found in 

all alcids, but the number of vertebrae on which they occur varies among the species. 

Th ese structures serve as increased area for attachment of M. longus colli ventralis, are 

functionally correlated with the strength needed by diving birds (Kuroda 1954). It is 

hypothesized that a greater number of vertebrae with well-developed hypapophyses is 

a more derived condition. Similar structures are found in other diving birds such as 

loons, grebes, penguins, and some anseriforms (Beddard 1898 in Strauch 1985).

56. Th oracic vertebrae, number of hypapohyses (crista [processus] ventralis cor-

poris; Baumel and Witmer 1993; modifi ed from Strauch 1985, character 14): (0) well 

developed on all thoracic vertebrae; (1) well developed on all but last vertebrae; (2) 

well developed on all but last two vertebrae; (3) well developed on all but last three 
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vertebrae; (4) well developed on all but last four vertebrae; (5) well developed on all 

but last fi ve vertebrae. Ordered
57. Pygostyle, dorsal margin (Chu 1998, character 67): (0) dorsally restricted; 

(1) dorsally expanded. In contrast to the dorsally expanded pygostyle observed in all 

other charadriiforms examined during this study (e.g., Larus argentatus), the Alcidae 

are characterized by a pygostyle lacking dorsal expansion.

Sternum

58. Sternum, coracoidal sulci, separation (modifi ed from Chandler 1990b, char-

acter 35): (0) continuous above dorsal manubrium; (1) sulci separated by manubrium. 

Th e sternal articular surface of the coracoid is a continuous, smooth, depression in 

many charadriiforms (e.g., Larus marinus), while in Alcidae (e.g., Alca torda) the sulci 

are separated by the manubrium (i.e., rostrum sterni; Baumel and Witmer, 1993).

59. Sternum, anterior pneumatic foramen: (0) reduced; (1) pneumatic. Th e 

pneumatic foramen located at the anterior end of the sternal basin is reduced to a tiny 

‘pin-sized’ hole in alcids (e.g., Alca torda). In most other charadriiforms examined (e.g., 

Larus marinus) this feature is a deep pneumatic foramen.

60. Sternum, sternocoracoidal process, orientation (Strauch 1985, character 10; 

Chandler 1990b, character 36): (0) points dorsally; (1) points anteriorly. In the Lari and 

most other charadriiforms the sternocoracoidal process (process craniolateralis, Baumel 

and Witmer 1993) of the sternum points dorsally; in the puffi  ns (e.g., Fratercula arctica), 

auklets (e.g., Aethia psittacula) and Mancallinae (e.g., SDSNH 26242) it points anteriorly.

61. Sternum, costal processes, quantity (Strauch 1985, character 12; Chandler 

1990b, character 41): (0) fi ve; (1) six; (2) seven. Although some charadriiforms (e.g., 

Glareola maldivarum) not closely related to Alcidae have fi ve costal processes of the 

sternum, the Lari and most other charadriiforms (e.g., Larus marinus) have six. Some 

alcids (e.g., Alca torda) have seven. Ordered
62. Sternum, width (modifi ed from Chandler 1990b, character 39): (0) narrow 

posteriorly; (1) broad posteriorly. In dorsal view the posterior sternum of most alcids 

(e.g., Aethia pygmaea) is lateromedially broader than the anterior sternum (i.e., the area 

of the sternum proximal to the distal-most costal process), while in other species (e.g., 

Alca torda) the sternum is roughly the same width throughout its length.

63. Sternum, medial notch (Strauch 1985, character 8): (0) absent; (1) present. 

Most charadriiforms (e.g., Larus marinus) have a medial sternal notch, but several, in-

cluding members of the Lari and Alcidae (e.g., Aethia pusilla), do not. Distribution of 

the states among other charadriiforms thus does not indicate which state is primitive 

in the alcids. Only the puffi  ns (Fraterculini) retain the remnant of the medial sternal 

notch as a medial sternal fenestra.

64. Sternum, medial notch, shape: (0) a notch; (1) a fenestra. Among alcids, only 

the puffi  ns (Fraterculini) retain the remnant of the medial sternal notch as a medial 

sternal fenestra.
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65. Sternum. lateral notch, shape (Strauch 1985, character 9; Chandler 1990b, 

character 38): (0) a notch; (1) a fenestra. Almost all charadriiforms (including all Lari) 

have a lateral sternal notch. In the auklets it is reduced to a fenestra, a condition as-

sumed to be a derived state in the Alcidae. Shufeldt (1888, 1889) and Lucas (1890) 

reported that in the auks the lateral sternal notch tends to become ossifi ed with age. 

Th is condition clearly diff ers from that in the auklets; it is hypothesized to represent 

merely a variant of the state with the notch present. Kuroda (1954, 1955) illustrated 

the variation with age of the sternal notching of some alcids (Strauch 1985).

66. Sternum, lateral notch, anterior extent of incisure: (0) shallow; (1) deeply 

incised. In most charadriiforms, the extent to which the lateral sternal notches incise 

proximally is limited (e.g., Larus marinus), while in some charadriiforms (e.g., Man-

calla vegrandis), these incisures are extensive.

67. Sternum, posterior extension of carina relative to lateral sternal notches/
fenestrae (modifi ed from Chandler 1990b, character 40): (0) carina extends to dis-

tal ends of notches/fenestrae; (1) lateral sternal notches/fenestrae extend posteriorly 

beyond posterior extent of carina. Th e length of the carina relative to the posterior 

extent of the lateral sternal notches/fenestrae of alcids varies from extending to a point 

about equally posterior to the posterior margins of the lateral sternal notches/fenestrae 

in some alcids (e.g., Alca torda), to a condition in which the lateral sternal notches/

fenestrae extend posterior to the carina (e.g., Aethia cristatella).

68. Sternum, supracoracoideus scar, position: (0) angled medially; (1) straight. 

In contrast to the condition observed many charadriiforms (e.g., Sterna maxima) in 

which the scar for the supracoracoideus muscle on the ventral surface of the sternum 

angles medially from the coracoidal sulcus towards the carina, in Alcidae this scar ex-

tends posteriorly for almost the entire length of the carina. Th is feature is correlated 

with the increased resistance during the upstroke experienced by alcids while fl ying 

underwater (Kozlova 1957).

69. Sternum, posterior margin ossifi cation (margo caudalis sterni; Baumel and 

Witmer 1993; modifi ed from Chandler 1990b, character 43): (0) not ossifi ed; (1) os-

sifi ed. Th e posterior-most portion of the sternum is an ossifi ed posteriorly projecting 

structure in many species (e.g., Uria lomvia), while in other species (e.g., Brachyramphus 

marmoratus) it is completely unossifi ed and not preserved in dry skeletal specimens.

70. Sternum, length of area between distal extent of medial fenestra and pos-
terior margin (modifi ed from Chandler 1990b, character 43): (0) short; (1) long. Th e 

ossifi ed area of sternum posterior to the termination of the carina (i.e., the xiphoid) 

is short (i.e., wider than long) in some alcids (Alle alle), while in others (e.g., Cepphus 
grylle) this feature is much longer (i.e., nearly as long or longer than it is wide).

71. Sternum, length: (0) short; (1) long. When compared to their immediate 

outgroup, the Stercorariidae, alcids have an elongated sternum (i.e., sternum >2× long 

than wide), a character which has been associated with diving (Storer 1960). Th e great-

est length of the sternum (i.e., from the anterior manubrium to the distal xiphoid) is 

more than two times the width of the sternum across the sternocoracoidal processes in 

all alcids (e.g. Alca torda).
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Furcula

72. Furcula, symphysis (apophysis), size (modifi ed from Chandler 1990b, char-

acter 30): (0) large; (1) small. A medially oriented crest-like projection characterizes 

the furcular symphysis of alcids. Th is crest can be either small (i.e., projects less than 

the width of individual clavicles at symphysis; Aethia psittacula) or large (i.e., projec-

tion as wide or wider than that of individual clavicles at symphysis; (e.g., Brachyram-

phus marmoratus).

73. Furcula, anterior surface of rami (Strauch 1978, character 41): (0) smooth; (1) 

grooved. Th e anterior surface of the furcula dorsal to the apophysis is characterized by a 

distinct mediolaterally oriented groove or concavity in some alcids (e.g., Cepphus grylle; 

see Strauch 1978, Fig. 22, pg. 310). Th e furculae of other alcids (e.g., Alca torda) are 

rounded or convex on the anterior surface of the furcula dorsal to the furcular symphysis.

74. Furcula, cristae on anterior surface of rami: (0) absent; (1) present. Th e 

anterior surface of the furcular rami dorsal to the apophysis is characterized by the 

presence of small cristae/tubercles in some alcids (e.g., Alca torda).

75. Furcula, curvature of omal extremity (Chu 1998, character 76): (0) smooth-

ly curving; (1) sharply curved or angled at posterior extremity. Th e transition from the 

dorsally extending shaft of the clavicles to the omal extremity of the clavicles in Alcidae 

(e.g., Brachyramphus perdix) is characterized by a distinctly angular bend. Th e furculae 

of all other charadriiforms (e.g., Larus marinus) examined during the course of this 

study exhibited a more gently sloping furcular curvature.

76. Furcula, dorsoventral expansion of omal extremity: (0) absent; (1) present. 

Ventral to the coracoidal facet, the clavicles of most alcids (e.g., Pinguinus impennis) are 

dorsoventrally expanded and lateromedially compressed (i.e., bladelike; scapular tuber-

osity much thinner than clavicular shaft ventral to the coracoidal facet). Th e clavicles 

of many other charadriiforms (e.g., Tryngites subrufi collis) are more circular in cross 

section and much less dorsoventrally expanded (i.e., scapular tuberosity same width or 

thicker than clavicular shaft ventral to the coracoidal facet).

77. Furcula, coracoidal tuberosity, position relative to coracoidal facet (Chan-

dler 1990b, character 33): (0) medially adjacent to coracoidal facet; (1) separate and 

anterior to facet. Th e coracoidal tuberosity contacts the medial margin of the coracoi-

dal facet in alcids (e.g., Brachyramphus perdix), while in many other charadriiforms 

(e.g., Gygis alba) this tuberosity is more robust, separate from, and anterior to the 

coracoidal facet.

Scapula

78. Scapula, acromium, attachment of acrocoracoacromiale ligament in proxi-
mal view,: (0) anteriorly oriented pit; (1) laterally oriented scar. In some alcids (e.g., 

Uria aalge), the attachment of the acrocoracoacromiale ligament is an anteriorly ori-

ented excavation of the ventral surface of the acromium process bordered medially by 
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a crest. Th is same attachment point in other alcids (e.g., Aethia cristatella) is rotated 

laterally and is characterized by a relatively smooth attachment surface.

79. Scapula, acromium, shape in lateral view: (0) blunt, rounded; (1) angular, 

pointed. Th e acromium process of all extant alcids (e.g., Uria aalge) has a pointed 

proximal tip, while the tip of the acromium in some larids (e.g., Larus marinus) is 

rounded/truncated and does not project anteriorly.

80. Scapula, scapulotricipital tubercle: (0) absent; (1) present. A raised process 

for attachment of m. scapulotriceps on the ventral surface of the scapula (tuberculum 

m. scapulotricipitis, Baumel and Witmer 1993) just distal to the glenoid facet is pre-

sent in fl ightless alcids (e.g., Pinguinus impennis) but absent in all extant alcids (e.g., 

Alca torda). Th e presence of this structure in penguins (Schreiweis 1982), argues in 

favor of it being correlated with fl ightlessness.

81. Scapula, width of distal extremity: (0) tapering; (1) dorsoventrally expanded. 

Th e dorsal margin of the scapula (margo dorsalis; Baumel and Witmer 1993) is ex-

panded dorsally in some species of alcids (e.g., Cerorhinca monocerata). Th e distal ends 

of the scapulae of other alcids (e.g., Aethia pygmaea) are tapered to a point.

82. Scapula, shape of distal extremity: (0) curved; (1) angled. In contrast to the 

gently ventrally curving distal extremity of many charadriiforms (e.g., Larus argenta-

tus), the scapulae of all known alcids are characterized by a ventrally directed angular 

bend proximal to the distal most extremity.

Coracoid

83. Coracoid, furcular facet shape (modifi ed from Chandler 1990b, character 

28): (0) oval; (1) rounded. Th e furcular facet of the coracoid is rounded in the puffi  ns 

and auklets (e.g., Fratercula arctica) but is more oval with a vertical long axis in the auks 

and murres (e.g., Uria lomvia).

84. Coracoid, furcular facet, notch posterior to bicipital tubercle: (0) absent; 

(1) present. Th e ventral margin of the furcular facet is curves dorsally just posterior to 

the process for the attachment of the bicipital muscle in some species of alcids (e.g., 

Uria aalge). Th e ventral margin of this feature in other alcids (e.g., Alca torda) is gently 

curved but not notched.

85. Coracoid, supracoracoidal sulcus: (0) pneumatic; (1) apneumatic, but deep-

ly undercut; (2) not deeply undercut. Th e medial side of the distal end or head of the 

coracoid of some charadriiforms (e.g., Anous tenuirostris) are characterized by a pneu-

matic excavation. Th e coracoids of all alcids are apneumatic, although the brachial 

crest is deeply undercut for the passage of the supracoracoideus muscle in some species 

of alcids (e.g. Cepphus grille), while in some alcids (e.g., Cerorhinca monocerata) the 

brachial crest is not deeply undercut (i.e., ventrally concave). Ordered
86. Coracoid, brachial tuberosity, shape: (0) a tubercle; (1) a crest. Th e brachial 

tuberosity is developed as an anteroposteriorly oriented crest in some alcids (e.g., Cep-

phus grille), while in other alcids (e.g., Aethia psittacula) the brachial tuberosity is devel-



Taxonomic revision and phylogenetic analysis of the fl ightless Mancallinae (Aves, Pan-Alcidae) 77

oped simply as a small rounded tubercle positioned roughly at the midpoint on the neck 

of the coracoid. Th e term brachial crest is used here to describe the latter condition.

87. Coracoid, brachial tuberosity, shape in medial view: (0) approximately 

straight; (1) distinctly curved. In species that possess a brachial crest rather than a bra-

chial tubercle (see character 88), the crest varies from an approximately straight crest 

(e.g., Alle alle) to a distinctly concave curve (e.g., Alca torda).

88. Coracoid, neck in dorsal view (Chandler 1990b, character 29): (0) short; (1) 

long. Th e neck of alcid coracoids (defi ned here as the head of the coracoid distal to 

the distal-most extent of the glenoid facet), which extends medially to articulate with 

the furcula, is elongate (i.e., considerably longer than wide) in some species (e.g., Uria 

aalge) and gives the neck of the coracoid a rectangular appearance in dorsal view. In 

other species (e.g., Fratercula cirrhata) this neck is shorter (i.e., roughly as wide as it is 

long) and results in a rather square coracoidal neck.

89. Coracoid, supracoracoideus scar development: (0) a distinct ridge; (1) ridge 

reduced or absent. Contact with the supracoracoideus creates a distinct, medially ori-

ented ridge/scar in most alcids (e.g., Alca torda) that gives the shaft of the coracoid a 

distinctly angular cross-section, while in Cepphus this structure is greatly reduced or 

absent and the cross-section of the coracoid element is more rounded.

90. Coracoid, supracoracoidal nerve foramen (Strauch 1985, character 13; 

Chandler 1990b, character 25): (0) absent; (1) present. Th e Lari and most other 

charadriiforms have a coracoidal foramen (e.g., Pinguinus impennis); it is absent in 

some species of alcids (e.g., Aethia pusilla; Strauch, 1985).

91. Coracoid, position of supracoracoidal nerve foramen (0) distal; (1) proxi-

mal. In alcids that possess a coracoidal foramen, the position of this feature is typically 

near the midpoint of the of the procoracoid process near the shaft of the coracoid (e.g., 

Pinguinus impennis), although in Cepphus this foramen is positioned on the extreme 

anteroproximal edge of the procoracoid process leaving only a very thin strut of bone 

which forms the dorsal margin of the procoracoid process.

92. Coracoid, procoracoid process, shape: (0) rectangular; (1) triangular; (2) 

wing-shaped. Th e procoracoid process of some alcids (e.g., Aethia psittacula) is ‘strap-

like’ and has a roughly rectangular shape, resembling the condition in the outgroup of 

Alcidae. Th e shape of the procoracoid process in most alcids (e.g., Fratercula cirrhata) 

is triangular.

93. Coracoid, tip of procoracoid: (0) straight; (1) hooked. In Brachyramphus, the 

tip of the procoracoid is hooked anteriorly. Th is feature is absent in all other Alcidae 

for which the coracoid is known.

94. Coracoid, procoracoid process, orientation: (0) points dorsomedially; (1) 

points ventromedially; (2) points anteriorly. Th e tip of the procoracoid process in the 

auklets (e.g., Aethia pygmaea) is hooked, and points ventromedially, while in all other 

alcids (e.g., Uria aalge) the tip of the procoracoid process points dorsomedially. In 

many other charadriiforms (e.g., Larus marinus) the procoracoid process is noticeably 

hooked to provide passage for the supracoracoideaus tendon, and as a result the tip of 

the procoracoid process points anteriorly.



N. Adam Smith /  ZooKeys 91: 1–116 (2011)78

95. Coracoid, procoracoid process, shape of proximal edge: (0) concave; (1) 

convex. In posterior view the proximal edge of the procoracoid process (lower or ster-

nal side) in some alcids (e.g., Cerorhinca monocerata) curves convexly. Th e procoracoid 

process of other alcids (e.g., Uria aalge) is concave in curvature.

96. Coracoid, scar on anterior face of lateral edge of coracoid: (0) absent; (1) 

present. Alcids (e.g., Cepphus grylle) possess a distinct scar along the anterior surface of 

the lateral process that is lacking in other charadriiforms (e.g., Bartramia longicauda). 

Th e exact origin of this scar is unclear, although Fürbringer (1888) discusses several 

accessory ligaments that attach in this area.

97. Coracoid, scar extension along anterior surface of lateral process: (0) 

extends to sternal articulation; (1) bordered sternally by crest. Th is scar is less me-

dially and sternally extended and more excavated in the auklets and puffi  ns (e.g., 

Fratercula cirrhata) than in other alcids (e.g., Alca torda) in which this scar is less 

excavated and extends to the sternal margin of the coracoid (i.e., not bordered ster-

nally by a crest).

98. Coracoid, crest along sternal edge of lateral process: (0) absent; (1) present. 

In anterior view the sternal edge of the lateral process of some alcids (e.g., Uria aalge) is 

characterized by a crest or thickening of the sternal margin. Th is characteristic is absent 

in some alcids (e.g., Alca torda).

99. Coracoid, lateral (sternocoracoidal) process length (modifi ed from Strauch, 

1985, character 11): (0) elongate, with anteriorly pointing tip; (1) short, with laterally 

pointing tip. Th e lateral process of the coracoid is a well developed, elongate projecting 

process with an anteriorly projecting tip in most alcids (e.g., Alca torda) the Laridae 

and most other charadriiforms; it is absent or poorly developed in some of the auklets 

(e.g., Aethia pusilla). Th ese diff erences are illustrated by Kuroda (1954: Fig. 7) and are 

mentioned by Shufeldt 1889 in Strauch 1985).

100. Coracoid, medial sternal process, notch in dorsal margin: (0) absent; (1) 

present. Th e posteromedial margin of the proximal coracoidal shaft just distal to the 

medial sternal articulation (angulus medialis; Baumel and Witmer, 1993) is character-

ized by a small dorsoanterior oriented projection, giving the shaft a notched appear-

ance in medial view at this point in most alcids (e.g., Aethia cristatella). Th e medial 

angle is more pointed in other alcids (e.g., Alca torda).

101. Coracoid, sternal facet curvature (Chandler 1990b, character 26): (0) an-

gled ~135°; (1) angled ~90°; (2) angled >90°. Among the alcids the sternal articulation 

facet of the coracoid varies, the anterior margin curving roughly 135° in some (e.g., 

Cepphus grylle), roughly 90° in others (e.g., Alca torda), and greater than 90° in the 

auklets (e.g., Aethia pusilla). Ordered

Humerus

102. Humerus, head, distal extent of posterior margin (caput): (0) convex 

curve; (1) triangular point. Th e distally overturned posterior margin of the humeral 
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head of some alcids (e.g., Cepphus grylle) is characterized by a distinct, distally extend-

ing point. Th is feature is rounded in most other alcids (e.g., Alca torda).

103. Humerus, dorsal caput, posterior side (modifi ed from Chandler 1990b; 

character 49): (0) not notched; (1) notched. Th e posterior surface of the dorsal caput 

in proximal view is notched ventral to the dorsal tubercle in some species of alcids (e.g., 

Pinguinus impennis) owing to the posterior projection of the supracoracoidal crest, 

while in some alcids (e.g., Fratercula cirrhata) this transition curves gently anteriorly 

(i.e., is not notched).

104. Humerus, deltopectoral crest, distal extension (modifi ed from Chandler 

1990b, character 53): (0) does not extend to midpoint of shaft; (1) extends distally to 

the midway point of shaft; (2) extends beyond the midpoint of the humeral shaft. Th e 

deltopectoral crest extends distally along the anterodorsal margin of the humeral shaft 

to a point roughly ⅓ to one half of the distance towards the distal end of the shaft in 

most species of alcids (e.g., Fratercula arctica), while in Pinguinus the deltopectoral 

crest extends to the halfway point along the shaft. In Mancalla this crest extends dis-

tally beyond the midpoint of the shaft.

105. Humerus, deltopectoral crest, transition to shaft: (0) smooth; (1) abrupt. 

As noted by Howard (1982) the deltoid crest merges smoothly with the shaft of the 

humerus in most alcids (e.g., Pinguinus impennis) while in some alcids (e.g., Fratercula 

arctica) this transition is more abrupt or angled.

106. Humerus, deltopectoral crest, dorsal curvature: (0) concave; (1) fl at. In 

dorsal view, the area between the dorsal surface of the deltopectoral crest and the dor-

sal tubercle (i.e., the dorsal shaft distal to the head) is concave in many charadriiforms 

(e.g., Creagrus furcatus). In all alcids except Alca stewarti this space is fl at or slightly 

convex in some cases (e.g., Brachyramphus marmoratus).

107. Humerus, impressio coracobrachialis scar, depth (Chandler 1990b, char-

acter 60): (0) very deep; (1) deep; (2) shallow. Th e scar for attachment of the impressio 

coracobrachialis muscle in alcids (e.g., Aethia psittacula) is a shallow (i.e., smoothly 

transitions to anterior surface of humeral head), usually rounded impression (e.g., Alca 
torda). Th is is in contrast to the condition in most other charadriiforms, in which this 

muscle scar is a very deeply excavated, usually triangular pit. Ordered
108. Humerus, distal edge of bicipital crest, angle with respect to long axis of 

shaft: (0) not perpindicular; (1) nearly perpindicular. Th e ventral edge of the bicipital 

crest forms a nearly perpindicular angle to the shaft in some species (e.g., Pinguinus 

impennis) while in other species (e.g., Alca torda) the bicipital crest is positioned at an 

obtuse angle with respect to the long axis of the humeral shaft.

109. Humerus, biciptal crest, transition to shaft: (0) smooth; (1) notched. Th is 

character, noted by Olson and Winker, (2009), varies from a condition where (in an-

terior view) the bicipital crest transitions smoothly onto the humeral shaft (e.g., Aethia 

pusilla) to a condition in which there is a distinct notch or separation between these 

structures (e.g., Alle alle).
110. Humerus, coracobrachial sulcus, conformation: (0) open sulcus; (1) closed 

duct. As noted by Olson and Winker, (2009), the coracobrachial sulcus is an open 
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sulcus in most species of alcids (e.g., Aethia pusilla), although in some species of alcids 

(e.g., Alca torda) the sulcus is enclosed to form a duct.

111. Humerus, coracobrachial sulcus, curvature: (0) dorsal; (1) ventral. Th e 

distal most point of the bicipital surface, as defi ned by the curvature of the coracobra-

chial sulcus, which curves or angles dorsal to the bicipital crest on the anterior surface 

of the humerus in some alcids (e.g., Pinguinus impennis), while in other alcids (e.g., 

Alle alle) the coracobrachial sulcus and the distal edge of the bicipital surface extend 

ventrally to terminate where the bicipital crest contacts the ventral surface of the hu-

meral shaft.

112. Humerus, supracoracoideus scar, depth: (0) deep; (1) shallow. Th e attach-

ment for the supracoracoideus muscle on the posterior humerus is a deep (i.e., excavat-

ed) scar in puffi  ns (e.g., Fratercula arctica) and a shallow (i.e., basically fl at) impression 

in others (e.g., Cepphus grylle).

113. Humerus, supracoracoideus scar, shape: (0) round; (1) long, proximally 

broadening; (2) long, does not broaden proximally. Th e attachment of the supracora-

coideus muscle on the proximal humerus of most charadriiforms (e.g., Larus marinus) 

is a rounded scar, while in alcids this scar is distally elongated (Crista m. supracoracoid-

ei; Baumel and Witmer 1993). In some alcids (e.g., Fratercula arctica) the proximal end 

of the scar is much broader than the distal end, while in other alcids (e.g., Alca torda) 

the scar is relatively the same width throughout its length.

114. Humerus, supracoracoideus scar, transition into the secondary pneu-
matic fossa (pf2): (0) pf2 borders scar; (1) scar separated from pf2; (2) margo cau-

dalis widely separates pf2 and scar. In most alcids (e.g., Alca torda) the dorsal extent 

of the excavation of the second pneumatic fossa parallels the ventral margin of the 

supracoracoideus scar. In some species (e.g., Cerorhinca monocerata) the excavation for 

pneumatic fossa 2 is separated from the supracoracoideus scar by a thin, fl at, latero-

medially oriented projection of the humeral shaft (which is most like the very reduced 

remains of the margo caudalis). Th e supracoracoideus attachment point in many other 

charadriiforms (e.g., Larus marinus) is widely separated from the medial portion of the 

humeral shaft by the margo caudalis and does not extend as far distally as the condition 

seen in alcids. Ordered
115. Humerus, medial crest between pneumatic fossae, extension relative to 

the bicipital crest (modifi ed from Chandler 1990b, character 51): (0) ends proximal 

to distal-most extension of bicipital crest; (1) crest extends to distal extant bicipital 

crest; Th e crest which divides the pneumatic fossae varies in the distance it extends 

distally towards the distal margin of the bicipital crest. In some species (e.g., Pinguinus 
impennis) this crest terminates proximal to the distal edge of the bicipital crest. In some 

species (e.g., Alle alle) this crest extends to the distal edge of the bicipital crest.

116. Humerus, primary pneumatic fossa, excavation for insertion of humero-
triceps muscle: (0) absent; (1) present. Th e interior (i.e., anterior wall) of the ven-

tral pneumatic fossa (fossa pneumotricipitalis ventralis; Baumel and Witmer 1993) in 

most alcids (e.g., Alca torda) is smooth. In Fratercula cirrhata this area is characterized 

by a small ‘eye shaped’ excavation.
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117. Humerus, primary pneumatic fossa, accessory ridge: (0) absent; (1) pre-

sent. Th e interior (i.e., anterior wall) of the ventral pneumatic fossa in most alcids (e.g., 

Alca torda) is smooth. In some Fraterculini (e.g., Cerorhinca monocerata) this area is 

characterized by a small accessory ridge.

118. Humerus, primary pneumatic fossa, depth: (0) deeply pneumatic; (1) 

moderately deep; (2) shallow. In contrast to the deeply pneumatic (i.e., deeper than 

wide) fi rst fossa of most charadriiforms (e.g., Larus marinus), the fi rst pneumatic fossa 

of most alcids (e.g., Uria aalge) is moderate in depth (i.e., ~ as deep as wide). In true 

auks (e.g., Alca torda) the fi rst pneumatic fossa is very shallow and constricted (i.e., less 

deep than wide). Ordered
119. Humerus, primary pneumatic fossa, shape: (0) round; (1) oval. Th e fi rst 

pneumatic fossa varies in shape from rounded (e.g., Pinguinus impennis) to oval (e.g., 

Cerorhinca monocerata).

120. Humerus, mancalline scar on posterior side of proximal humerus: (0) 

absent; (1) present. In Mancalla a deep scar extends along the humeral shaft distal 

to the fi rst pneumatic fossa. Th is distinct scar, hereafter referred to as the ‘mancalline 

scar’, is absent in all other charadriiforms. And its its homology is, therefore, uncertain. 

Although it is possible that this scar may represent an additional insertion point of m. 

humerotriceps.

121. Humerus, mancalline scar on posterior side of proximal humerus, con-
formation: (0) excavated; (1) raised. Th e dorsal and ventral borders of the scar on the 

posterior side of the proximal humerus of Mancalla extend parallel to one another in 

some species (e.g., Mancalla californiensis). In other species (e.g., Miomancalla wet-

morei) these borders converge proximally, giving this scar a more triangular shape.

122. Humerus, mancalline scar on posterior side of proximal humerus, proxi-
mal extension relative to the fi rst pneumatic fossa: (0) extends within the fi rst pneu-

matic fossa; (1) scar terminates near the distal margin of the fi rst pneumatic fossa. 

Th e proximal extent of this scar varies from a condition in which the scar extends well 

within the fi rst pneumatic fossa (e.g., Mancalla californiensis) to a condition in which 

this scar terminates near the distal margin of the fi rst pneumatic fossa (e.g., Mioman-

calla wetmorei).

123. Humerus, mancalline scar on posterior side of proximal humerus, shape: 
(0) ridges parallel; (1) ridges converge proximally. Th e dorsal and ventral borders of 

the scar on the posterior side of the proximal humerus of Mancalla extend parallel 

to one another in some species (e.g., Mancalla californiensis). In other species (e.g., 

Miomancalla wetmorei) these borders converge proximally, giving this scar a more 

triangular shape.

124. Humerus, attachment of scapulohumeralis caudalis, position: (0) medi-

al; (1) ventral. Th e insertion point of scapulohumeralis caudalis (crus ventrale fossae; 

Baumel and Witmer 1993) in many alcids (e.g., Aethia pusilla) is restricted to the me-

dial border of the fi rst pneumatic fossa (which is also the distal margin of the ventral 

tubercle). Th is fossa extends along the ventral margin of the fi rst pneumatic fossa in 

other alcids (e.g., Alca torda).
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125. Humerus, scapulohumeralis caudalis attachment scar, depth: (0) fl at or 

slightly concave; (1) a deep pit. As noted by Olson and Rasmussen (2001), in alcids the 

attachment point of the scapulohumeralis caudalis muscle on the margin of the fi rst 

pneumatic fossa varies from a basically fl at or slightly concave surface (e.g., Alca torda) 

to a deeply excavated pit (e.g., Fratercula arctica).

126. Humerus, primary pneumatic fossa, shape of distal edge: (0) convex; (1) 

straight; (2) concave. Th e distal edge of the pneumatic fossa is concave (e.g., Aethia 

pusilla) or straight (e.g., Alca torda) in alcids. Th is feature is convex in most other 

charadriiforms (e.g., Charadrius wilsonia).

127. Humerus, secondary pneumatic fossa, (fossa pneumotricipitalis dorsalis; 

Baumel and Witmer 1993; modifi ed from Strauch 1985, character 17): (0) absent; 

(1) present. Th e Lari and most other charadriiforms (e.g., Larus marinus) have a well-

developed pneumatic fossa II of the humerus. However, in many alcids (e.g., Alca 

torda), it is poorly developed or absent (Strauch 1985).

128. Humerus, secondary pneumatic fossa, depth (fossa pneumotricipitalis; 

Baumel and Witmer, 1993; modifi ed from Strauch, 1985, character 17): (0) a deep 

excavation; (1) a shallow excavation. Among alcids, only the puffi  ns (e.g., Cerorhinca 

monocerata) possess an excavated second pneumatic fossa.

129. Humerus, secondary pneumatic fossa, division: (0) absent; (1) present. 

Th e pneumatic fossa II of some alcids (e.g., Aethia pygmaea) is divided by a medial 

crest, creating two separate points for muscle insertion. Th is feature is absent in most 

alcids (e.g., Cerorhinca monocerata).

130. Humerus, ridge between ventral tubercle and secondary pneumatic fossa: 
(0) absent; (1) present. On the posterior side of the humerus in Brachyramphus a slight 

ridge extends distally from underneath the distally overturned head of the humerus 

and contacts dorsal margin of the ventral tubercle, thus dividing the second pneumatic 

fossa from the capital groove.

131. Humerus, ventral tubercle, shape: (0) long and thin; (1) short and thick. 

In ventral view the ventral tubercle of some species of alcids (e.g., Fratercula arctica) is 

fairly thin and extends posteriorly to a point roughly level with the posterior extent of 

the caput. In other alcids (e.g., Alca torda) this feature does not extend as far posteri-

orly, and is more robust.

132. Humerus, ventral tubercle, lateral margin curvature: (0) single concavity; 

(1) double concavity. When viewed ventrally the lateral margin of the ventral tubercle of 

all alcid species other than Cerorhinca monocerata is a single concave curve. Th is feature 

in Cerorhinca monocerata is characterized by two concave curves. Th is character is the re-

sult of the crus ventrale fossae of Cerorhinca monocerata being divided into two sections.

133. Humerus, ventral tubercle, shape of posterior tip: (0) rounded or oval; (1) 

elongate. In Brachyramphus the posterior-most extension/point of the ventral tubercle 

is dorsally expanded into an elongate shape. In other alcids (e.g., Fratercula arctica) this 

feature is rounded or oval in shape.

134. Humerus, ventral tubercle, ventral margin curvature: (0) not deeply 

grooved; (1) deeply grooved. In anterior or posterior view the point at which the ven-
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tral tubercle and the ventral margin of the fi rst pneumatic fossa merge varies in its 

shape from ventrally convex or fl at (e.g., Fratercula corniculata) to ventrally concave 

(e.g., Pinguinus impennis).

135. Humerus, m. latissimus dorsi scar, curvature: (0) straight; (1) curves dor-

sally. Th e latissimus dorsi scar in most alcids (e.g., Fratercula arctica) extends distally 

straight down the shaft of the humerus. Th e latissimus dorsi scar of some alcids (e.g., 

Cepphus grylle) curves anteriorly across the dorsal surface of the humeral shaft.

136. Humerus, capital groove, anterior expression (modifi ed from Chandler 

1990b, character 52): (0) curved; (1) notched; (2) deep groove. In anterior view the 

capital groove of most alcids (e.g., Alca torda) is visible as a notch on the laterome-

dial side of the humeral head. In the aukets (e.g., Ptychoramphus aleuticus) the capital 

groove is not expressed anteriorly, resulting in a convexly curved shaped lateromedial 

side of the humeral head. In the Mancallinae alcids (e.g., Mancalla cedrosensis) the capi-

tal groove communicates with the ligamental furrow, and is expressed as a deep groove 

in the ventral margin of the anterior humeral head. Ordered
137. Humerus, capital groove, width: (0) wide; (1) constricted. In all alcids (e.g., 

Fratercula arctica) except Mancalla the capital groove is an open ‘U’ shaped groove. 

Only in Mancalla does the caput overhang the capital groove, giving the proximal wall 

of the capital groove a convex shape, and constricting this passageway.

138. Humerus, capital groove, shape: (0) ‘U’ shaped; (1) pointed anteriorly. In 

ventral view the capital groove is ‘U’ shaped in most alcids (e.g., Aethia psittacula). In 

Mancalla the capital groove is constricted anteriorly.

139. Humerus, orientation of head relative to shaft: (0) in line with shaft; (1) 

rotated anteriorly. As noted by Miller (1933), the humeral head of most alcids (e.g., 

Alca torda) is in-line with the shaft of the humerus, while the ventral portion of the 

humeral head of mancalline alcids (e.g., Mancalla cedrosensis) is rotated anteriorly.

140. Humerus, longitudinal shape of shaft,: (0) sigmoidal; (1) arced. As noted 

by Lucas (1901), the shaft of most alcids (e.g., Alca torda), when viewed laterally, is 

slightly sigmoidal in shape, while the shaft of the mancalline alcids (e.g., Mancalla 
californiensis) is arced.

141. Humerus, cross-sectional shape of shaft,: (0) rounded; (1) semi-rounded; 

(2) fl attened. As noted by Howard (1978, 1982), the humeral shaft of most alcids 

(e.g., Alca torda) is fl attened in cross-section (fl attened oval). Th e shaft of some alcids 

(e.g., Cepphus grylle) is more rounded (i.e., semi-rounded) in cross-section. Th e hu-

meral shaft of other charadriiforms (e.g., Larus marinus) is rounded in cross-section. 
Ordered

142. Humerus, shaft thickness: (0) robust; (1) gracile. Th e thickness of the hu-

meral shaft varies from robust (i.e., width of shaft in anterior view greater than or equal 

to half the width of the humeral head; e.g., Brachyramphus marmoratus) to gracile (i.e., 

width of shaft in anterior view less than or equal to half the width of the humeral head; 

e.g., Alle alle).
143. Humerus, dorsal supracondylar process, shape: (0) large dorsally point-

ing projection; (1) small dorsally pointing projection; (2) smoothly transitioning; (3) 
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square; (4) rounded knob. Th e attachment point for M. extensor carpi along the dorsal 

margin of the distal humerus projects dorsally away from the shaft in many charadrii-

forms (e.g., Larus marinus; state 0) while in all alcids this feature is elongated along 

the shaft of the humerus medially and does not project as far dorsally. States within 

Alcidae include: (1) a small dorsally projecting point (e.g., Alca torda), (2) square, ~ 90° 

contact with shaft (e.g., Fratercula arctica) (3) smoothly transitioning to the shaft (e.g., 

Pinguinus impennis), In Mancalla this process is a rounded knob that is separated from 

the distal extent of the dorsal supracondylar prominence (crest) by a gap.

144. Humerus, dorsal supracondylar process, length: (0) short; (1) long. Th e 

dorsal supracondylar process of most alcids (e.g., Aethia pygmaea) is short (i.e., the 

proximodistal length measured from the distal end of the humerus to the proximal 

termination of the crest on the humeral shaft is shorter than the greatest distal width 

of the humerus measured from the entepicondyle to the dorsal condyle). Th e dorsal 

supracondylar process of some alcids (e.g., Mancalla lucasi) extends further proximally 

onto the humeral shaft.

145. Humerus, dorsal sulcus: (0) continuous; (1) divided. Th e sulcus for passage 

of extensor metacarpi radialis, which runs between the dorsal supracondylar process 

and the dorsal condyle is continuous in all alcids (e.g., Pinguinus impennis) except the 

Fraterculini (e.g., Fratercula arctica), in which this sulcus is divided by a bony crest, 

forming a round pit on the posterior edge of the dorsal condyle.

146. Humerus, ventral epicondyle, orientation relative to shaft: (0) fl ared ven-

trally; (1) nearly straight. As noted by Olson and Rasmussen (2001), in anterior view 

the ventral margin of the ventral epicondyle is fl ared ventrally in Fratercula arctica, but 

is nearly straight in Cepphus grylle.

147. Humerus, tricipital sulci, width (modifi ed from Chandler 1990b, char-

acter 54): (0) scapulotricipital sulcus narrower than humerotricipital sulcus; (1) sulci 

of equal width; (2) scapulotricipital sulcus broader than humerotricipital sulcus. Th e 

scapulotricipital sulcus of Fraterculini species (e.g., Cerorhinca monocerata) is narrower 

than humerotricipital sulcus. In most other alcid taxa (e.g., Alca torda) these sulci are 

of roughly equal width. Alle alle is the only species of extant alcid in which the scapu-

lotricipital sulcus is broader than the humerotricipital sulcus.

148. Humerus, tricipital crest, orientation: (0) straight, projects posteriorly; 

(1curved dorsally over scapulotricipital sulcus. Th e crest that divides the tricipital sulci 

(humerotricipital and scapulotricipital sulci) is a low posteriorly projecting ridge in 

most alcids (e.g., Uria aalge). In Mancalla this ridge veers dorsally and merges with the 

dorsal margin of the scapulotricipital sulcus on its lateral side.

149. Humerus, humerotricipital sulcus, shape in distal view: (0) fl attened; (1) 

‘U’ shaped or curved. In distal view the humerotricipital sulcus of all alcids other than 

Alle alle and Uria aalge is curved or ‘U’ shaped.

150. Humerus, tricipital fossae: (0) absent; (1) present. Th e scapulotricipital 

and humerotricipital sulci of Mancallinae are characterized by fossae positioned at the 

proximal end of the sulci. Th e sulci of other alcids transition smoothly onto the poste-

rior face of the humeral shaft.
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151. Humerus, relative distal extension of condyles (Chandler 1990b, character 

61): (0) level; (1) distal extent of dorsal condyle proximal to distal extent of ventral 

condyle. Th e dorsal condyles of all extant alcids (e.g., Alca torda) are situated slightly 

proximal to the ventral condyle. Th e condyles of most other charadriiforms (e.g.,Gygis 

alba) extend distally an equal distance.

152. Humerus, ventral condyle in distal view, posterior trochlear process: (0) 

absent; (1) present. As noted by Marsh (1870) in the original description of Cataractes 

antiquus a posterodorsally-projecting tubercle is present on the ventral condyle; pro-

jecting into the sulcus between the ventral condyle and the saddle that defi nes the dis-

tal extent of the humerotricipital sulcus. Th is characteristic is also present in Pinguinus, 

but is lacking in all other alcids (e.g., Alca torda). Th is character has also been noted in 

penguins and plotopterids (Marples 1952; Ksepka et al. 2006).

153. Humerus, ventral condyle, shape (Chandler, 1990b, character 59): (0) 

rounded; (1) fl attened. Th e anterior face of the ventral humeral condyle is fl attened in 

most alcids (e.g., Pinguinus impennis), while the ventral condyle is rounded in all other 

charadriiforms examined during this study (e.g., Larus argentatus).

154. Humerus, separation of humeral condyles: (0) absent; (1) present. In distal 

view the humeral condyles of Brachyramphus are separated, whereas the ventral margin 

of the dorsal condyle and the dorsal margin of the ventral condyle of other alcids (e.g., 

Synthliboramphus antiquus) contact one another.

155. Humerus, tubercle adjacent to dorsal condyle: (0) absent; (1) present. As 

noted by Howard (1982), a small rounded tubercle lies ventral to the dorsal condyle 

along the ventral margin of the brachial impression in some alcids (e.g. Mancalla cali-

forniensis), but is absent in most species of alcids (e.g., Alca torda).

156. Humerus, tubercles dorsal to scapulotricipital groove: (0) absent; (1) 

present. Many alcids (e.g., Brachyramphus perdix) possess a tubercle along the dorsal 

border of the scapulotricipital sulcus. In alcids this tubercle is located distal to paired 

fossae that lye between the raised dorsal margin of the scapulotricpital sulcus and the 

dorsal sulcus.

157. Humerus, tubercles dorsal to scapulotricipital groove, quantity: (0) a sin-

gle tubercle; (1) paired tubercles. Rather than a single tubercle, some alcids (e.g., Man-

calla cedrosensis) possess two tubercles dorsal to the scapulotricipital sulcus.

158. Humerus, ventral supracondylar tubercle (anterior ligament scar): (0) tri-

angular; (1) rounded. On the anterior surface of the distal shaft of the humerus ventral 

to the brachialis scar, the ventral supracondylar tubercle, which is the attachment for 

the ventral collateral ligament, varies in its shape from triangular (e.g., Brachyramphus 
marmoratus), to an oval/rounded pit (e.g., Alca torda).

159. Humerus, pit associated with anterior ligament scar: (0) absent; (1) pre-

sent. A small scar on the distal humerus marks the attachment point of the M. prona-

tor sublimis in some species of alcids (e.g., Alca torda), but is absent in many species 

(e.g., Uria aalge).
160. Humerus, position of pit adjacent to anterior ligament scar: (0) proximal; 

(1) ventral; (2) detached. Th e position of the small pit, which marks the origination 
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point of the M. pronator sublimis varies in its position. In some species (e.g., Aethia 

pygmaea) this feature is located at the proximal tip of the anterior ligament scar, while 

in other species of alcids (e.g., Aethia psittacula) it is located along the dorsal margin 

of this scar. In some other charadriiforms (e.g., Phaetusa simplex), this scar is detached 

from the anterior ligament scar.

Radius

161. Radius, bicipital tubercle: (0) reduced; (1) distinct. Th e auklets (e.g., Ptycho-

ramphus aleuticus) and murrelets (e.g., Synthliboramphus antiquus) lack the distinct bi-

cipital tubercle found in other alcids (e.g., Alca torda).

162. Radius, bicipital tubercle, shape: (0) a crest; (1) a round tubercle. Th e shape 

of the bicipital tubercle in Alcidae (e.g., Alca torda) is an elongated crest-like structure, 

rather than the rounded tubercle of other charadriiforms (e.g., Larus marinus).

163. Radius, bicipital tubercle, position: (0) contacts papilla; (1) separate. Th e 

bicipital tubercle of most alcids (e.g., Uria lomvia) is a swollen area along the distal 

margin of what Howard (1929) termed the ligamental papilla. In a few alcids (e.g., 

Cepphus columba) the bicipital tubercle is a separate structure, positioned distally and 

separated from the ligamental papilla.

164. Radius, sulcus tendinosus (Chu 1998, character 102): (0) not divided; (1) 

divided lengthwise by a crest. Th e tendinal groove located on the dorsal side of the 

distal radius is divided by a crest in some species of alcids (e.g., Synthliboramphus an-

tiquus). Th is feature is lacking in the charadriiform outgroup taxa examined and also 

in the auklets (e.g., Aethia pusilla).

165. Radius, notch in distal end: (0) absent; (1) present. In anterior view, the 

crest associated with the scapho-lunar facet of some alcids (e.g., Aethia pygmaea) ex-

tends far enough distally so that a notch is formed between that crest and the ventral-

most articulation surface of the distal radius with the radiale. In other alcids (e.g., Alle 
alle) the crest on the anterior surface of the radius transitions smoothly into the distal 

end of the radius.

Ulna

166. Ulna, olecranon, length: (0) long; (1) short; (2) truncate. Th e olecranon of 

most alcids (e.g., Alca torda), is a long (i.e., projects well past the medial extent of the 

ventral cotyla) medially projecting point. In some species (e.g., Pinguinus impennis) 

the olecranon is truncated (i.e., does not extend past the medial extent of the ventral 

cotyla), while the condition in other alcids (i.e., Aethia pusilla) is intermediate (i.e., 

olecranon short). Ordered
167. Ulna, olecranon, curvature: (0) fl ares posteriorly; (1) curves anteriorly. In 

dorsal view the posterior margin of the ulnar head of most alcids (e.g., Pinguinus im-
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pennis) fl ares posteriorly to form the posterior edge of the olecranon, while in some 

species (e.g., Alca torda) this margin curves anteriorly.

168. Ulna, ventral collateral ligament tubercle, shape: (0) triangular; (1) round-

ed. Th e scar for the attachment of the ventral collateral ligament is triangular in some 

alcids (e.g., Alca torda) and more rounded in others (e.g., Aethia psittacula).

169. Ulna, crest extending from the ventral cotyla to the anterior margin of 
the ventral collateral ligament tubercle (modifi ed from Chandler 1990b, character 

63): (0) absent; (1) present. Th e ventral cotyla of the proximal ulna is separate from the 

scar for the attachment of the ventral collateral ligament in some species of alcids (e.g., 

Cepphus grylle). In other alcids (e.g., Alle alle) a crest extends laterally from the ventral 

cotyla and contacts the anterior margin of the collateral ligament scar.

170. Ulna, crest extending from the ventral cotyla to the posterior margin of 
the ventral collateral ligament tubercle: (0) absent; (1) present. Although most alcids 

(e.g., Alca torda) lack a crest, which extends from the ventral cotyla to contact the pos-

terior margin of the ventral collateral ligament scar, several alcids (e.g., Brachyramphus 

brevirostris) possess this character.

171. Ulna, dorsal cotylar process, anterior margin shape: (0) rounded; (1) 

straight. Th e dorsal condyle of alcids is bordered on the posterior margin by a pos-

teriorly projecting bladelike process for attachment of the scapulotriceps muscle. Th e 

anterior margin of this feature in dorsal view can be either rounded (e.g., Alca torda) or 

straight (e.g., Fratercula cirrhata).

172. Ulna, dorsal cotylar process, development (Chu 1998, character 98): (0) 

poorly developed; (1) well developed. Th e dorsal cotylar process of all alcids (e.g., Alca 

torda) is a distinct anteriorly expanded structure when compared to the less developed 

condition observed in other charadriiforms (e.g., Larus marinus).

173. Ulna, proximal radial depression, shape: (0) a round pit; (1) a triangular 

pit; (2) broad and fl at. In contrast to the distinctly triangular shape of the proximal 

radial depression of most charadriiforms (e.g., Larus marinus), the proximal radial de-

pression of all extant alcids (e.g., Uria aalge) is a round pit situated distal to the ulnar 

cotylae. In some charadriiforms not closely related to Alcidae (e.g., Bartramia longi-

cauda) the radial depression is broad and fl at. In Miomancalla wetmorei the proximal 

radial depression is a broad fl at space bordered dorsally and ventrally by distinct crests 

that occupies the entire anterior surface of the ulna (Howard 1982). Ordered
174. Ulna, brachial impression, breadth: (0) thin; (1) broad. As noted by How-

ard (1982) the brachial impression on the proximal ulna of some alcids (e.g., Alca 

torda) is a relatively thin scar (i.e., does not comprise more than half the width of the 

ulnar shaft), while in some species (e.g., Fratercula arctica) this feature is broader (i.e., 

comprises more than half of the width of this proximal portion of the ulna).

175. Ulna, intramuscular line: (0) non-distinct; (1) distinct, raised ridge. As 

noted by Olson (1981), an inter-muscular line runs between the proximal radial de-

pression and the nutrient foramen. Th is inter-muscular line is non-distinct and often 

barely visible in many species of alcids (e.g., Alle alle), while in others this feature is 

distinct and raised (e.g., Pinguinus impennis).
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176. Ulna, shaft, shape: (0) rounded; (1) semi-fl attened; (2) fl attened. As noted by 

Howard (1978) the ulnae of most alcids (e.g., Alca torda) exhibit the fl attening typical 

of the pectoral elements of wing-propelled divers, while the ulnae of some alcids (e.g., 

Cepphus grylle) are more rounded (i.e., semi-fl attened) in cross section. Th e ulna of 

other charadriiforms (e.g., Larus marinus) are more rounded in cross section. Ordered
177. Ulna, dorsal condyle, shape: (0) rounded; (1) angular. Th e entire posterior 

margin of the dorsal ulnar condyle of some alcids (e.g., Pinguinus impennis) is rounded, 

while in other alcids (e.g., Alca torda) the dorsal condyle has an angular bend distal to 

the contact with the ulnar shaft.

178. Ulna, carpal tubercle, shape: (0) fl at or angled distally; (1) concave. Th e dis-

tal margin of the carpal tubercle of some alcids (e.g., Alca torda) is fl at or angles slightly 

distally in some specimens. In Cepphus this surface is concave, giving the distal surface 

of the carpal tubercle a hooked appearance.

179. Ulna, sulcus intercondylaris: (0) concave; (1) fl at. In distal view the groove 

between the ulnar condyles is a concave ‘U’ shaped depression in some species (e.g., 

Alca torda). In other species (e.g., Pinguinus impennis) the posterior surface of the ven-

tral condyle angles anteriorly from the sulcus towards the ventral surface of the ulna, 

forming a fl at almost 90° angle between the condyles (i.e., ‘stairstep-like’).

180. Ulna, length: (0) longer than carpometacarpus; (1) shorter than carpometacar-

pus. Th e ulnae of most alcids (e.g., Cepphus grylle) are longer than their carpometacarpi, 

while the ulnae of Mancallinae are shorter (e.g., Mancalla cedrosensis). Th is condition is 

not known in other fl ightless birds, but interestingly, is found in some hummingbirds.

181. Ulna, ventral condyle, orientation (Chandler 1990b, character 64): (0) di-

rected posteriorly; (1) directed posteroventrally. Th e ventral condyle of Mancalla spe-

cies (e.g., Mancalla cedrosensis) is directed posteroventrally, while in all other charadrii-

form taxa examined during this study, the ventral condyle is directed posteriorly.

182. Ulna, dorsal condyle, distal extension (Chandler 1990b, character 65): (0) 

dorsal condyle extends distal to ventral condyle; (1) level. Th e dorsal condyle of most 

alcids (e.g., Alca torda) extends distally the same distance as the ventral condyle. In 

Mancalla (e.g., Mancalla cedrosensis) the dorsal condyle extends further distally than 

the ventral condyle.

Carpometacarpus

183. Carpometacarpus, extensor process of metacarpal 1: (0) present; (1) ab-

sent. Th e carpometacarpi of all alcids except Mancalla (e.g., Mancalla cedrosensis) have 

an extensor process on the anterior margin of metacarpal 1.

184. Carpometacarpus, metacarpal 1, length (modifi ed from Chandler 1990b, 

character 67): (0) short; (1) long. Th e fi rst metacarpal of most alcids (e.g., Alca torda) 

extends distally about one third of the length of metacarpal 2, while in Mancalla spe-

cies (e.g., Mancalla cedrosensis) the extensor process terminates approximately at the 

midpoint of metacarpal 2.
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185. Carpometacarpus, extensor process of metacarpal 1, anterior margin 
shape (modifi ed from Strauch 1985, character 18; Chandler 1990b, character 69): 

(0) rounded knob; (1) fl at. Th e extensor process of the carpometacarpus is a short, 

rounded knob in the Lari and most other charadriiforms (e.g., Fratercula arctica). In 

the Alcini (e.g., Alca torda) the anterior margin of the process of metacarpal 1 is fl at in 

comparison with other extant alcids (yet still slightly anteriorly convex).

186. Carpometacarpus, proximal intermetacarpal spatium, position relative 
to the distal extent of metacarpal 1 (modifi ed from Chandler 1990b, character 71): 

(0) symphysis distal to MC1; (1) symphysis level with MC1; (2) symphysis proximal 

to MC1. In relation to the pollical facet, the symphysis can be either distal to it (e.g., 

Aethia cristatella), level with it (e.g., Cepphus carbo), or proximal to it (e.g., Synthlibo-

ramphus antiquus).

187. Carpometacarpus, posterior extension of ventral trochlear margin rela-
tive to metacarpal III (modifi ed from Chandler 1990b, character 70): (0) ventral 

trochlear margin of carpometacarpus extends posteriorly to metacarpal III (e.g., Alca 

torda); (1) ventral trochlear margin and metacarpal III extend an equal distance pos-

teriorly (e.g., Fratercula arctica); (2) ventral trochlear margin does not extend as far 

posteriorly as metacarpal III (e.g., Aethia pusilla).

188. Carpometacarpus, pisiform process, development: (0) distinct; (1) re-

duced. Th e Pisiform process of most alcids (e.g., Miomancalla wetmorei) is a distinct 

ventral projection. Th e Pisiform process of Mancalla cedrosensis is reduced to a small 

scar. Similar to the condition observed in penguins, the reduction of this feature in 

Mancalla may be related to the stiff ening of the wing that is associated with the lack of 

these highly specialized wing propelled divers need to fl ex the manus.

189. Carpometacarpus, distal end of tendinal groove (i.e., sulcus interosseous; 

Baumel and Witmer 1993): (0) a sulcus; (1) a bony canal. Th e sulcus occupied by the 

tendons of the interossei muscle on the distal end of the dorsal carpometacarpus var-

ies from a distally open-ended groove (e.g., Uria lomvia), to a partially or fully roofed 

bony canal (e.g., Aethia pusilla).

190. Carpometacarpus, minor digit articulaton: (0) level with facies articularis 

digitalis major; (1) proximal to facies articularis digitalis major. Th e articulation surface 

of the minor digit (III:1) is located proximally to the articulation surface for the major 

digit (II:1) in some species (e.g., Pinguinus impennis), whereas in other species (e.g., 

Alca torda) the articulation surfaces are approximately level.

Major Phalanx

191. Manual digit II, phalanx 1, fenestration: (0) absent; (1) present. Th e major 

phalanx of many charadriiforms (e.g., Larosterna inca) is penetrated by two fenestrae. 

Th ese fenestrae are absent in all alcids.

192. Manual digit II, phalanx 1, shape of process on dorsal surface of the 
distal end: (0) rounded; (1) rectangular. A bladelike process projects posteriorly from 
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the distal end of the fi rst phalange of the second digit. In dorsal view this process varies 

from rounded (e.g., Aethia pusilla) to rectangular (e.g., Alca torda).

193. Manual digit II, phalanx 1, length: (0) <1/2 length of carpometacarpus; 

(1) >1/2 length of carpometacarpus. Th e greatest length of the major phalanx of some 

charadriiforms (e.g., Sterna maxima) is >1/2 the greatest length of the carpometacar-

pus. Th e length of the major phalanx is <1/2 the length of the carpometacarpus in all 

alcids except Pinguinus impennis, in which the relative length of the wing elements has 

been reduced in association with fl ightlessness.

Pelvis

194. Ilium, pre-acetabular ilium, lateral expansion: (0) not expanded, narrow; 

(1) expanded laterally, spatulate. As noted by Kuroda (1954) the anterior ends of the 

pre-acetabular blades of the ilium are laterally expanded (i.e., wider) in some species of 

alcids (e.g., Uria lomvia) than others (e.g., Synthliboramphus antiquus).

195. Synsacral strut extending to acetabulum (Strauch 1985, character 15; 

Chandler 1990b, character 47): (0) absent; (1) present. In most charadriiforms (e.g., 

Aethia pygmaea) a strut or brace extends from the fused sacral-caudal vertebrae towards 

the acetabulum. In alcids this strut may be well developed (contra Strauch, 1978), it 

may be reduced to a very slight ridge, or it may be completely absent (e.g., Alca torda; 

Strauch, 1985).

196. Renal depression (Chandler 1990b, character 44): (0) broad; (1) narrows 

posteriorly. Th e renal depression on the ventral side of the ilium maintains a relatively 

constant width in some alcids (e.g., Aethia pusilla) while in other alcid species (e.g., 

Uria aalge) the renal depression narrows posteriorly.

197. Antitrochanteral sulcus, distal extension: (0) terminates at antitrochanter; 

(1) extends past antitrochanter. Th e antitrochanteral sulcus (sulcus antitrochantericus, 

Baumel and Witmer 1993) is bordered medially by a crest that extends distal to the ac-

etabulum in some alcids (e.g., Alca torda). Th is crest curves laterally and ends at, or just 

past, the distal extent of the antitrochanter in other species of alcids (e.g., Cepphus grylle).

198. Iliosynsacral suture: (0) fused; (1) perforated. Th e contact between the lat-

eral processes of the sacral vertebrae and the ilium, termed the iliosynsacral suture 

(sutura iliosynsacralis, Baumel and Witmer 1993), is fused along its entire margin in 

some alcids (e.g., Cepphus columba), while in other species (e.g., Alca torda) this suture 

is non-continuous (i.e., perforated by spaces between the lateral processes of the sacral 

vertebrae). Th is feature is distinct from the foramina intertransversaria of Baumel and 

Witmer (1993), which are located medially to the iliosynsacral suture.

199. Ilium, post acetabular dorsal iliac crest: (0) broadens; (1) narrows. Th e 

dorsal iliac crest (crista dorsolateralis ilii, Baumel and Witmer 1993) broadens past 

the acetabulum and angles posterolaterally in some species of alcids (e.g., Uria aalge), 

while in other species of alcids (e.g., Alca torda) the post acetabular area of the ilium is 

narrower (i.e., tapers posteriorly).



Taxonomic revision and phylogenetic analysis of the fl ightless Mancallinae (Aves, Pan-Alcidae) 91

200. Ilium, dorsolateral iliac spine orientation: (0) dorsal; (1) dorsolateral. Th e 

dorsolateral iliac spine (spina dorsolateralis ilii, Baumel and Witmer 1993) is oriented 

so that its surface faces much more dorsally in some species of alcids (e.g., Cepphus 

columba) than in others (e.g., Uria aalge).

201. Ilium, dorsolateral iliac spine shape: (0) pointed; (1) square. Th e dorso-

lateral iliac spine (spina dorsolateralis ilii, Baumel and Witmer 1993) is pointed in all 

alcids (e.g., Cepphus columba) except Aethia (e.g., Aethia pygmaea).

202. Ischium, relative length of ischial angle and posterior projection (Strauch 

1985, character 16; Chandler 1990b, character 46): (0) ischial angle much longer; (1) 

both structures about the same length. In the Lari and most other charadriiforms (e.g., 

Alca torda) the ischial angle is much longer than the posterior projection of the ilium; 

in the auklets (e.g., Aethia pusilla) the length of the ischial angle is much reduced, 

and the structures are almost the same length. Th ese diff erences also are indicated by 

Storer’s (1945a) measurements of alcid skeletons (Strauch 1985).

203. Pelvis, width: (0) broad; (1) narrow. In contrast to the broad (i.e., length of 

pelvis from anterior-most illium to distal point of the dorsal iliac spine <= 2× width 

across pelvis at antitrochanter) pelvi of many other charadriiforms (e.g., Sterna maxi-

ma), the pelvi of all alcids are narrow (i.e., length of pelvis from anterior-most illium to 

distal point of the dorsal iliac spine>2× width across pelvis at antitrochanter).

Femur

204. Femur, trochanteric ridge, shape: (0) convex; (1) straight; (2) concave. In 

most alcids the anterior margin of the femoral trochanter in lateral view is straight 

(e.g., Alca torda) or convex (e.g., Alle alle). In puffi  ns (e.g., Fratercula arctica) the tro-

chanter is slightly concave.

205. Femur, trochanteric ridge, length: (0) long; (1) short. As noted by Miller 

(1937) the trochanteric crest of the femur varies in the extent to which it extends dis-

tally down the lateral shaft of the proximal femur from short (i.e., extends distally <2× 

width of the lateral surface of femoral head; e.g., Synthliboramphus hypoleucus) to long 

(i.e., extends distally >=2× width of the lateral surface of femoral head; e.g., Alca torda).

Tibiotarsus

206. Tibiotarsus, cnemial crests, shape in proximal view: (0) ‘T’ shaped; (1) 

‘L’ shaped. In some alcids (e.g., Aethia cristatella) the medial cnemial crest extends 

posteriorly along the medial margin of the femoral articulation surface. Th is gives this 

feature a ‘T’ shape in proximal view. Some alcids (e.g., Uria lomvia) lack this posterior 

extension and as a result the cnemial crests appear ‘L’ shaped in proximal view.

207. Tibiotarsus, cnemial crests, distal extent (Chandler 1990b, character 74): 

(0) anterior crest extends further distally than lateral cnemial crest; (1) both extend 
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distally about equal. Th e distal extent of the cnemial crests is roughly equal in some 

alcids (e.g., Alle alle) while the anterior cnemial crest extends further distally in some 

alcids (e.g., Aethia psittacula).

208. Tibiotarsus, lateral cnemial crest orientation: (0) directed anterolaterally; (1) 

directed laterally. In proximal view the external cnemial crest of some alcids (e.g., Alca 

torda) is directed anterolaterally, while the lateral cnemial crest of other alcids (e.g., Aethia 

psittacula) is directed laterally, which results in a more constricted incisura tibialis.

209. Tibiotarsus, notch in lateral margin of medial condyle (Chandler 1990b, 

character 75): (0) absent; (1) present. Th e distal most portion of the medial condyle of 

many alcids (e.g., Pinguinus impennis) is notched in lateral view. Other alcids (e.g., Alca 

torda) lack this feature. Th is notch is a common feature in many charadriiforms (e.g., 

Larus marinus) and its absence is therefore considered derived among alcids.

210. Tibiotarsus, lateral projection of crest lateral to the groove for peroneus 
profundus tendon, posterior view: (0) a distinct projection; (1) not visible in dorsal 

view. Th e lateral edge of the groove for the peroneus profundus tendon projects far 

enough laterally in some species of alcids (e.g., Alca torda) to be visible in posterior 

view.

211. Tibiotarsus, supratendinal bridge: (0) not fully ossifi ed; (1) fully ossifi ed. 

Th e supratendinal bridge of all alcids (e.g., Alle alle) except Pinguinus is ossifi ed.

212. Tibiotarsus, length: (0) <2× greatest length of tarsometatarsus; (1) >2× 

greatest length of tarsometatarsus. Th e greatest length of the tibiotarsus is greater than 

two times the greatest length of the tarsometatarsus in most alcids (e.g., Alca torda), but 

in some species of alcids (e.g., Synthliboramphus antiquus) the tibiotarsus is less than 

twice the length of the tarsometatarsus.

Tarsometatarsus

213. Tarsometatarsus, tendinal canal No. 1 of hypotarsus, conformation 
(modifi ed from Strauch 1978, character 64; Chandler 1990b, character 82): (0) deep 

channel; (1) bony canal. Th e pattern of the canals in the hypotarsus of charadriiforms 

is discussed by Strauch (1978). In most charadriiforms canal No. 1 is a bony canal; 

in the Lari it is either a bony canal or a deep channel. In the Alcidae it may be a bony 

canal (e.g., Aethia pusilla), or a deep channel (e.g., Alca torda). Th e bony canal in 

charadriiforms is hypothesized to be primitive (Strauch 1978). More open canals in 

the hypotarsus have been linked with greater specialization and probably represent 

derived states (Harrison 1976 in Strauch 1985). In charadriiforms, tendinal canal No. 

1 provides passage for m. fl exor digitorum longus (Strauch 1978).

214. Tarsometatarsus, tendinal canal No. 2 of hypotarsus, position (modifi ed 

from Strauch 1978, character 65): (0) posterior to tendinal canal 1; (1) confl uent with 

tendinal canal 1; (2) posteromedial to tendinal canal 1, bordered medially by medial 

hypotarsal crest. In alcids that have an enclosed tendinal canal 1, this canal is positioned 

anterior to tendinal canal 2 (e.g., Alle alle). In alcids that do not have an enclosed tendi-
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nal canal 1 (e.g., Alca torda), the tendons for M. fl exor digitorum longus, and M. fl exor 

perforatus digit IV and/or M. fl exor perforans et et perforatus digiti II, presumably run 

within what has been designated tendinal canal 1 (Strauch 1978). Th e second tendinal 

canal of some other charadriiforms (e.g., Charadrius wilsonia) is located posteromedial 

to tendinal canal 1 along the medial border of the medial hypotarsal crest.

215. Tarsometatarsus, tendinal canal No. 3 of hypotarsus, conformation 
(modifi ed from Strauch 1978, character 66): (0) open groove; (1) mostly or com-

pletely enclosed bony channel. In the taxa examined, the third tendinal canal of the 

hypotarsus varies from a shallow groove (e.g., Alca torda) to a partially or fully enclosed 

bony canal (e.g., Cepphus grylle). In charadriiforms, the tendinal canal No. 3 provides 

passage for m. fl exor hallicus longus (Strauch 1978).

216. Tarsometatarsus, calcaneal ridges of hypotarsus, distal extension: (0) 

short; (1) long. Th e calcaneal ridges of the hypotarsus extend further distally (i.e., 

proximodistally longer than lateromedially wide) in some species of alcids (e.g., Synth-

liboramphus wumizusume) while in others (e.g., Ptychoramphus aleuticus), the calcaneal 

ridges are shorter (i.e., proximodistally shorter than lateromedially wide).

217. Tarsometatarsus, medial crest of hypotarsus: (0) absent; (1) present. Th e 

medial crest of the hypotarsus in many charadriiforms (e.g., Sterna maxima) is a well-

developed posteriorly projecting and distally extending structure. In all alcids (e.g., 

Alca torda) the medial hypotarsal crest is reduced (i.e., relatively the same size as other 

hypotarsal crests).

218. Tarsometatarsus, anterior groove, conformation (Chandler 1990b, char-

acter 79): (0) deep groove; (1) shallow groove. Th e anterior surface of the shaft of the 

tarsometatarsus is relatively fl at in some alcids (e.g., Alca torda) and a deep groove in 

others (e.g., Cerorhinca monocerata).

219. Tarsometatarsus, cross-sectional shape: (0) square; (1) rectangular. Th e tar-

sometatarsus of many alcids at mid-shaft is much wider than it is deep (e.g., Fratercula 

cirrhata), while in other alcids (e.g., Cepphus columba) the tarsometatarsus is approxi-

mately as wide as it is deep.

220. Tarsometatarsus, proximal vascular foramina, penetration of medial cal-
caneal ridge: (0) absent; (1) present. Th ere are two proximal vascular foramina in 

alcids. Th e medial foramina penetrates the medial calcaneal ridge all species (e.g., Alca 
torda) except (e.g., Ptychoramphus aleuticus) in which this foramina is positioned distal 

to the distal extent of the medial calcaneal ridge.

221. Tarsometatarsus, trochlear proportions (Strauch 1985, character 20): (0) 

fairly robust (i.e., “normal”) proportions for charadriiforms; (1) long and slender. In 

the Lari and most alcids (e.g., Alca torda) the proportions of the trochlea are similar. 

In some murrelets (e.g., Synthliboramphus antiquus) the trochleae are relatively long 

and somewhat compressed and give the tarsometatarsus a slender appearance (Storer 

1945b in Strauch, 1985).

222. Tarsometatarsus, trochlea II in lateral view, overlap of trochlea III (Chan-

dler 1990b, character 81): (0) trochlea 2 does not overlap trochlea 3; (1) trochlea 2 

overlaps trochlea 3. Th e distal extension of the second trochlea of the tarsometatarsus 
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relative to the third trochlea is variable in Alcidae. In most alcids (e.g., Alca torda) 

trochlea 2 partially overlaps trochlea 3, while in some alcids (e.g., Synthliboramphus 

antiquus) there is no overlap at all.

223. Tarsometatarsus, length: (0) tarsometatarsus longer than femur; (1) tarso-

metatarsus shorter than femur. Th e tarsometatarsi of a few alcids (e.g., Synthliboram-

phus antiquus) are longer than their femurs. Most alcids have femurs that are longer 

than their tarsometatarsi (e.g., Alca torda).

Integument

224. Maxillary rhamphotheca, color of tip (modifi ed from Chandler 1990b, 

character 95): (0) black or very dark brown; (1) red, orange or yellow; (2) white. In 

some alcids the tip of the beak varies in color from the rest of the rhamphothecum. 

Th e distal tip of the maxillary rhamphothecum varies in color from black or very dark 

brown (e.g., Alca torda), to shades of red, orange and yellow (e.g., Aethia psittacula), to 

white or light colored (e.g., Aethia pusilla).

225. Maxillary rhamphotheca, color (modifi ed from Chandler 1990b, character 

92): (0) primarily red, yellow or orange; (1) primarily black; (2) horn or grey. Th e 

maxillary rhamphothecum varies in color from black only (e.g., Uria aalge), to horn 

or grey colored

(e.g., Synthliboramphus wumizusume), to shades of red, yellow or orange (e.g., Fra-

tercula arctica).

226. Maxillary rhamphotheca, lateral surface ornamentation (modifi ed from 

Chandler 1990b, character 98): (0) smooth; (1) vertically grooved. Th e rhamphothe-

cum of some alcids have dorsoventrally oriented grooves (e.g., Alca torda), although 

this feature is not present in all alcids (e.g., Alle alle).

227. Maxillary rhamphotheca, horn at base of maxilla: (0) absent; (1) present. 

A dorsally projecting horn is present on the base of the posterior maxillary rhampho-

theca of Cerorhinca monocerata and Aethia pusilla. Th is feature is absent in all other 

alcids (e.g., Alle alle) and the nearest outgroups to Alcidae.

228. Maxillary rhamphotheca, seasonal change (Chu 1998, character 121): (0) 

absent; (1) present. Th e bill structure of most alcids (e.g., Alle alle) does not change 

once they reach adulthood, while the bills of some species (e.g., Fratercula arctica) un-

dergo dramatic changes associated with the breeding season.

229. Mouth tissue color (modifi ed from Chandler 1990b, character 93): (0) yel-

low; (1) red or orange; (2) white. Th e lining inside the mouth varies in color from 

shades of red (e.g., Cepphus grylle), orange (e.g., Fratercula corniculata) and yellow (e.g., 

Alca torda) to white (e.g., Aethia psittacula; Ridgway, 1919).

230. External nares, orientation: (0) laterally or dorsally directed oval or slit; (1) 

ventrally directed, medially oriented slit. Most alcids (e.g., Cepphus grylle) have oval 

shaped dorsally oriented nares. A few alcids (e.g., Fratercula arctica) have nares in the 

form of long, ventrally opening, medially oriented slits.
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231. Nostril feathering (Strauch 1985, character 22; Chandler 1990b, character 

89): (0) nostrils bare; (1) partially feathered; (2) fully feathered. Th e nostrils of the 

Lari, some alcids (e.g., Cerorhinca monocerata), and most other charadriiforms are bare. 

Some alcids (e.g., Cepphus grylle) have partially feathered nostrils, and others have 

completely feathered ones (e.g., Alca torda). It is hypothesized that increasing feath-

ering represents progressively derived states. Th is character was fi rst used by Brandt 

(1837) to classify the alcids (Strauch 1985). Ordered
232. Eye color: (0) darkly colored; (1) lightly colored. Th e eye color of most alcids 

(e.g., Alca torda) is brown, although a few alcids (e.g., Aethia pygmaea) have yellow or 

grey colored eyes.

233. Eye scales (Strauch 1985, character 24; Chandler 1990b, character 90): 

(0) absent; (1) present. Th e Lari and most other charadriiforms have no eye scales 

(e.g., Aethia psittacula); they are present in some puffi  ns (e.g., Fratercula cornicu-

lata; Strauch, 1985). Th ese dermal structures, although they change color during 

the breeding season and are undoubtedly used for mating display purposes, are also 

present year round and even on nestlings. Th is suggests that these ‘horns’ may have 

another purpose, possibly hydrodynamic. Th e evolution of a hardened horn solely for 

mating purposes seems unlikely given that a simple mating display could be achieved 

via feather coloration.

234. Plume in front of eye (Chandler 1990b, character 86): (0) absent; (1) pre-

sent. Aethia pygmaea is unique in possessing a plume that originates anterior to the eye. 

All other alcids lack this feature.

235. Plume behind eye (Chandler 1990b, character 87): (0) absent; (1) present. 

While most alcids (e.g., Alca torda) lack this feature, some alcids (e.g., Aethia pusilla) 

possess a plume that originates posterior to the eye.

236. Plume on forehead (Chandler 1990b, character 85): (0) absent; (1) present. 

Although lacking in most alcids (e.g., Alle alle), some species (e.g., Aethia psittacula) 

possess a head plume that originates on the forehead (in addition to plumes behind 

and in front of the eye).

237. Head plumage (Strauch 1985, character 23): (0) typical feathering; (1) vel-

vety plumage. Th e head plumage of the Lari and most other charadriiforms consists of 

typical feathers (e.g., Aethia psittacula); in some alcids (e.g., Alca torda) the head plum-

age is distinctly velvety (Strauch 1985).

238. Neck plumage (Chandler 1990b, character 101): (0) not notched; (1) 

notched. Th e neck plumage of some alcids (e.g., Uria lomvia) is notched in ante-

rior view.

239. White tips on secondaries (Strauch 1985, character 26; Chandler 1990b, 

character 88): (0) absent; (1) present. In the Lari the secondaries may be solid-colored 

or white-tipped. Th e condition in the Lari thus does not indicate the primitive state 

in the Alcidae. Since dark-tipped secondaries (e.g., Aethia pusilla) are found in three 

of the four major groups of alcids [“widespread” according to the principles of Kluge 

and Farris (1969)], white tips (e.g., Uria aalge) are hypothesized to be a derived state 

(Strauch 1985).
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240. White wing patch (Chandler 1990b, character 105): (0) absent; (1) present. 

Although absent in most alcids (e.g., Alle alle), some alcids possess a white wing patch 

(e.g., Cepphus grylle).

241. Number of primaries: (0) eleven; (1) nine. All alcids (e.g., Cepphus grylle) and 

many other charadriiforms have 10 functional primary fl ight feathers and an eleventh 

reduced primary, while some charadriiforms (e.g., Charadriius wilsonia) have 9 primaries.

242. Number of retrices (Strauch 1985, character 27; Chandler 1990b, character 

96): (0) ten; (1) twelve; (2) fourteen; (3) sixteen or more. Th e Lari have12 retrices. Al-

cid species may have 12 (e.g., Alca torda), 14 (e.g., Cepphus columba), 16, or 18 retrices 

(e.g., Fratercula arctica). Th e number appears to be constant within a species except for 

Cerorhinca monocerata, which may have 16 or 18. It is hypothesized that an increasing 

number of retrices represents increasingly derived states (Strauch 1985). Some other 

charadriiforms (e.g., Anous tenuirostris) only have ten retrices. Ordered
243. Shape of retrices (Strauch 1985, character 28; Chandler 1990b, character 

97): (0) rounded at tips; (1) pointed at tips. Th e retrices of the Lari and most other 

charadriiforms (e.g., Cepphus columba) have rounded tips. In some auks (e.g., Alca 

torda) the retrices are distinctly pointed at the tips (Strauch, 1985).

244. Winter plumage (Chandler 1990b, character 83): (0) contrasting dark man-

tle and white underparts; (1) mantle and underparts dark. While some species of alcids 

(e.g., Aethia pygmaea) remain darkly colored above and below year-round, many alcids 

(e.g., Alca torda) display white underparts during the winter months.

245. Juvenile plumage: (0) resembles winter adults; (1) resembles summer adults. 

Th e juvenile plumage of all acids (e.g., Uria lomvia) except Alca torda and Alle alle 

resembles the winter plumage of adults, in which the juvenile plumage resembles the 

summer plumage of adults (Kozlova 1957).

246. Moult: (0) simultaneous; (1) gradual. Most alcids (e.g., Uria lomvia) moult 

their fl ight feathers simultaneously, resulting in a roughly 45-day period of fl ightless-

ness. Only the auklets (e.g., Aethia pygmaea) moult their fl ight feathers gradually, 

maintaining the ability of fl ight year-round (Kozlova 1957).

247. Tail shape (modifi ed from Chandler 1990b, character 99): (0) rounded; (1) 

central notched; (2) pointed; (3) forked. Variation in the tail shape of alcids includes 

rounded (e.g., Uria lomvia), central notched (e.g., Fratercula arctica) and pointed (e.g., 

Alca torda).

248. Foot color (modifi ed from Chandler 1990b, character 94): (0) red, orange, 

or pink; (1) white or grey; (2) black or dark brown; (3) buff  or tan. Foot color in the 

Alcidae varies from red (e.g., Cepphus columba), to grey (e.g., Aethia pygmaea), to black 

(e.g., Alca torda; Ridgway 1919).

249. Scutellation (modifi ed from Strauch 1985, character 29; Chandler 1990b, 

character 106): (0) scutellate; (1) reticulate. Th e scutellation on the dorsal podotheca 

(i.e., acrotarsium) of the Lari is scutellate. In alcids it may be either scutellate (e.g., Alca 

torda) or reticulate (e.g., Aethia pygmaea; Strauch 1985).

250. Ungual (claw) of inner toe, shape (modifi ed from Strauch 1985, charac-

ter 21): (0) gracile, gently curving; (1) stout and strongly recurved. Th e second claw 
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of most charadriiforms (e.g., Aethia pygmaea) is moderately arched, compressed, and 

acute (Coues, 1868). In puffi  ns that dig their own burrows (e.g., Fratercula arctica), the 

inner (second) toe is usually stout and strongly recurved (Strauch 1985).

251. Foot webbing: (0) absent; (1) present. All alcids (e.g., Alca torda) have web-

bing between the second, third and fourth toes. Some charadriiforms (e.g., Charadriius 

wilsonia) lack this characteristic.

252. Hallux (Chandler 1990b, character 80): (0) absent; (1) present. Alcids (e.g., 

Uria lomvia) diff er from many other charadriiforms (e.g., Larus marinus) in that they 

lack a fi rst toe or hallux.

253. White face color in breeding plumage (Chandler 1990b, character 91): (0) 

absent; (1) present. During the breeding season the face color of some alcids (e.g., Fra-

tercula arctica) changes to white in color. Th e face color of most alcids (e.g., Alca torda) 

is not white during the reproductive phase.

254. Belly color during breeding plumage (Chandler 1990b, character 84): (0) 

white; (1) black; (2) mottled brown; (3) grey. Th e belly-color of alcids during the 

breeding season varies from white (e.g., Alca torda), to black (e.g., Fratercula cirrhata), 

to mottled brown (e.g., Brachyramphus marmoratus), to grey (e.g., Aethia pygmaea).

255. Barred breeding plumage (Chandler 1990b, character 104): (0) absent; 

(1) present. Th e breeding plumage of some alcids (e.g., Brachyramphus marmoratus) 

is barred.

Reproduction

256. Incubation patches (Strauch 1985, character 25; Chandler 1990b, character 

103): (0) two; (1) one. Paired lateral incubation patches are found in shorebirds, Lari, 

and some alcids (e.g., Alle alle; Bailey 1952). Some alcids (e.g., Alca torda) have only 

one patch (Strauch 1985).

257. Nest sites (modifi ed from Strauch 1985, character 32): (0) bare rock or 

scrape; (1) natural crevices; (2) burrows; (3) built of sticks, grass, feathers, etc. Th e Lari 

nest in the open, as do some alcids (Ptychoramphus aleuticus). Other alcids (e.g., Fra-

tercula arctica) nest in crevices or in burrows. Kozlova (1957) thought that the original 

nest sites of alcids were on open rocks or coastal cliff s (e.g., Alca torda). It is hypoth-

esized that nesting in crevices or in burrows represents increasingly derived conditions 

(Strauch, 1985).

258. Nesting dispersion (Strauch 1985, character 33): (0) colonial; (1) solitary. 

Th e Lari and most of the alcids (e.g., Alca torda) nest in colonies. Some species of alcids 

(e.g., Brachyramphus marmoratus), however, nest solitarily (Strauch 1985).

259. Nesting proximity to shore: (0) near-shore; (1) inland. Although most al-

cids (e.g., Alca torda) nest on sea-cliff s or rocky beaches near-shore, a few alcids (e.g., 

Brachyramphus marmoratus) nest further inland.

260. Clutch size (Strauch 1985, character 30; Chandler 1990b, character 102): 

(0) one; (1) two or more. Th e Lari and almost all other charadriiforms lay a clutch of 
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two or more. Although some alcids (e.g., Cepphus grylle) lay two eggs, most species lay 

only one (e.g., Alca torda; Strauch 1985).

261. Egg shape (modifi ed from Chandler 1990b, character 100): (0) ovate; (1) 

pyriform; (2) elliptical; (3) sub-elliptical/ovate. Alcid eggs display considerable variety 

of shape. Th e eggs of the majority of alcid species (e.g., Cepphus grylle) are characterized 

as sub-elliptical/ovate in shape. Th e second most common alcid egg shape is ovate (e.g., 

Alle alle). Other shapes include pyriform (e.g., Pinguinus impennis) and elliptical (e.g., 

Synthliboramphus hypoleucus).

262. Egg markings, scribbling: (0) absent; (1) present. Th e eggs of some alcids 

(e.g., Pinguinus impennis) display complex ‘scribbles’, although the eggs of most alcids 

(e.g., Aethia cristatella) lack this feature.

263. Egg texture: (0) smooth; (1) granular. Th e eggs of some alcids (e.g., Alca 

torda) have a rough, granular texture. Th e eggs of other alcids (e.g., Cepphus grylle) and 

most charadriiforms have a smooth texture.

264. Egg luster: (0) non-glossy; (1) glossy. Th e luster of murrelet (e.g., Synthliboram-

phus antiquus) eggs varies from all other alcids (e.g., Alca torda) in having a glossy luster.

265. Color of downy chicks: (0) variable; (1) primarily brown; (2) primarily 

black; (3) primarily grey; (4) primarily buff  or white. Th e down feathering of charadri-

iform chicks is predictably colored in most species (e.g., black in Cepphus grylle), al-

though the color of the down feathers in some terns (e.g., Sterna maxima) is variable 

(i.e., sometimes black, sometimes buff ).

266. Post-hatching development pattern (Strauch 1985, character 31): (0) semi-

precocial; (1) intermediate; (2) precoccial. Alcids have three distinct post-hatching devel-

opment patterns: precocial, intermediate, and semi-precocial (Sealy 1973). Th e pattern 

for Pinguinus is unknown. Bengtson (1984), in a review of the literature on Pinguinus, 

estimated that chicks leave the nest at about 10 days old, which would agree with an inter-

mediate pattern. In the Lari the pattern is semi-precocial; it is hypothesized that shorten-

ing of the nestling period in alcids represents a derived condition (Strauch 1985). Ordered

Diet

267. Adult prey preference: (0) primarily invertebrates; (1) primarily vertebrates; 

(2) signifi cant amounts of invertebrates and vertebrates. Many of the smaller alcids 

(e.g., Alle alle) are specialized feeders on small invertebrates, while some larger alcids 

(i.e., Fratercula arctica) subsist on a diet of mostly fi sh (del Hoyo et al. 1996).

268. Chick diet: (0) primarily invertebrates; (1) primarily vertebrates; (2) signifi -

cant amounts of invertebrates and vertebrates. Th e diet that alcids feed to their chicks 

varies from primarily invertebrates such as copepods, amphipods, and euphausiids (del 

Hoyo et al. 1996; e.g., Alle alle), to primarily vertebrates such as fi sh and eels (del Hoyo 

et al. 1996; e.g., Uria lomvia). Many close outgroup taxa to Alcidae are more general-

ized feeders (i.e., a combination of both invertebrates, vertebrates, carrion, trash; del 

Hoyo et al. 1996; e.g., Larus marinus).
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Musculature

(see Hudson et al. 1969 for complete character descriptions)

269. M. pectoralis abdominalis insertion on (Hudson 1969): (0) tendon of M. 

pectoralis thoracica; (1) humerus.

270. Anterior head of M. subcoracoideus (Hudson 1969): (0) small or absent; 

(1) short or long.

271. M. propatagialis longus dilation at wrist (Hudson 1969): (0) unossifi ed; 

(1) ossifi ed.

272. M. propatagialis (Hudson 1969): (0) two tendons; (1) one tendon.

273. Patagial fan sesamoid (Hudson 1969) : (0) present; (1) absent.

274. M. deltoideus minor dorsal head (Hudson 1969): (0) present; (1) absent.

275. Swelling in M. triceps tendons (Hudson 1969): (0) unossifi ed; (1) ossifi ed.

276. Swelling in humero-ulnar pulley (Hudson 1969): (0) ossifi ed; (1) unossi-

fi ed.

277. M. biceps brachii (Hudson 1969): (0) divided lengthwise; (1) divided dis-

tally; (2) undivided.

278. M. fl exor digitorum sublimis dilation at base of phalanx 1 (Hudson 

1969): (0) ossifi ed; (1) unossifi ed.

279. M. ulnimetacarpalis dorsalis ventral head (Hudson 1969): (0) present; (1) 

absent.

280. M. ambiens (Hudson 1969): (0) present; (1) absent.

281. Pars iliofemoralis of M. piriformis (Hudson 1969): (0) absent; (1) present.

282. Pars interna of M. gastrocnemius (Hudson 1969): (0) extends around ante-

rior surface of knee; (1) does not extend around anterior surface of knee.

283. Pars interna of M. gastrocnemius (Hudson 1969): (0) no extra head from 

tibia; (1) extra head from tibia.

284. Pars medialis of M. gastrocnemius (Hudson 1969): (0) present; (1) absent.

285. M. plantaris (Hudson 1969): (0) present; (1) absent.

286. Sesamoid of M. scapulotriceps (Hudson 1969): (0) absent; (1) present.

287. Sesamoid of M. humerootriceps (Hudson 1969): (0) absent; (1) present.

288. Sesamoid of humero-ulnar pulley (Hudson 1969): (0) absent; (1) present.

289. Sesamoid of propatagialis longus at wrist (Hudson 1969): (0) absent; (1) 

present.

290. Sesamoid of fl exor digitorum profundus in hand (Hudson 1969): (0) ab-

sent; (1) present.

291. Sesamoid of fl exor digitorum sublimis at base of phalanx 1 (Hudson 

1969): (0) absent; (1) present.

292. Sesamoid of fl exor digitorum longus (Hudson 1969): (0) absent; (1) pre-

sent.
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Feather microstructure

(see Dove 2000 for complete character descriptions)

293. Subpennaceous region (modifi ed from Dove 2000 character 1): (0) absent; 

(1) present.

294. Subpennaceous region pigmentation (modifi ed from Dove 2000 character 

2): (0) absent, both vanules unpigmented (1) present, both vanules pigmented.

295. Subpennaceous region pigmentation position (modifi ed from Dove 2000 

character 2): (0) distal vanule more pigmented; (1) both vanules equally pigmented.
296. Subpennaceous length (modifi ed from Dove 2000 character 3): (0) short; 

(1) long; (2) very long.

297. Barbule base pigmentation (modifi ed from Dove 2000 character 4): (0) 

absent; (1) present.

298. Barbule base length (modifi ed from Dove 2000 character 5): (0) short; (1) 

long; (2) continuous with pennulum.

299. Barbule base cells (modifi ed from Dove 2000 character 6): (0) not visible; 

(1) visible.

300. Barbule base cell composition (modifi ed from Dove 2000 character 6): (0) 

single cell; (1) multiple cells; (2) both single and multiple.

301. Barb length (modifi ed from Dove 2000 character 7): (0) short; (1) long; (2) 

both short and long.

302. Barb pigmentataion (modifi ed from Dove 2000 character 8): (0) absent, not 

pigmented; (1) present, pigmented.

303. Barb pigmentation position (modifi ed from Dove 2000 character 8): (0) 

pigmented base to tip; (1) proximally pigmented; (2) both fully pigmented and unpig-

mented; (3) both fully pigmented and half-pigmented.

304. Barbule pigmentation (modifi ed from Dove 2000 character 11): (0) absent, 

no pigmented nodes; (1) present, all nodes pigmented.

305. Barbule pigmentation position (modifi ed from Dove 2000 character 11): 

(0) proximal nodes pigmented; (1) all nodes pigmented.

306. Node expansion (modifi ed from Dove 2000 character 12): (0) unexpanded; 

(1) expanded.

307. Node expansion location (modifi ed from Dove 2000 character 12): (0) uni-

form; (1) proximal.

308. Density of nodes per barbule (modifi ed from Dove 2000 character 13): (0) 

sparse; (1) dense.

309. Proximal node shape (modifi ed from Dove 2000 character 14): (0) normal; 

(1) fl ared; (2) oblong; (3) straight.

310. Midsection nodes shape (modifi ed from Dove 2000 character 15): (0) nor-

mal; (1) fl ared; (2) oblong; (3) straight.

311. Distal nodes (modifi ed from Dove 2000 character 16): (0) indistinct, not 

visible; (1) distinct, visible.
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312. Distal node shape (modifi ed from Dove 2000 character 16): (0) normal; (1) 

oblong.

313. Nodal spines (modifi ed from Dove 2000 character 17): (0) absent; (1) pre-

sent.

314. Nodal spine position (modifi ed from Dove 2000 character 17): (0) present 

at all nodes; (1) present at basal nodes; (3) with and without spines.

315. Nodal prongs (modifi ed from Dove 2000 character 18): (0) absent; (1) pre-

sent.

316. Nodal points (modifi ed from Dove 2000 character 19): (0) absent; (1) pre-

sent.

317. Nodal point position (modifi ed from Dove 2000 character 19): (0) present 

at all nodes; (1) present at basal nodes; (2) present at distal nodes; (3) nodes with and 

without points.

318. Proximal node pigment (modifi ed from Dove 2000 character 20): (0) ab-

sent or only a few pigment granules; (1) many pigment granules present.

319. Proximal node pigment shape (modifi ed from Dove 2000 character 20): 

(0) long and constricted; (1) diamond shaped; (2) short and constricted; (3) round; 

(4) diff use.

320. Mid-node pigment (modifi ed from Dove 2000 character 21): (0) absent or 

only a few pigment granules; (1) many pigment granules present.

321. Mid-node pigment shape (modifi ed from Dove 2000 character 21): (0) 

long and constricted; (1) diamond shaped; (2) short and constricted; (3) round; (4) 

diff use.

322. Distal node pigmentation (modifi ed from Dove 2000 character 22): (0) 

unpigmented nodes; (1) nodes pigmented.

323. Distal pigment distribution (modifi ed from Dove 2000 character 22): (0) 

continuous pigmentation; (1) distal pigmentation; (2) trailing pigment; (3) node clear, 

internode pigmented.

324. Nodal pigment intensity at basal nodes (modifi ed from Dove 2000 charac-

ter 23): (0) absent; (1) present.

325. Nodal pigment intensity at basal nodes (modifi ed from Dove 2000 charac-

ter 23): (0) lightly pigmented; (1) heavily pigmented.

326. Nodal pigment at distal nodes (modifi ed from Dove 2000 character 24): 

(0) absent; (1) present.

327. Nodal pigment intensity at distal nodes (modifi ed from Dove 2000 char-

acter 24): (0) lightly pigmented; (2) heavily pigmented.

328. Pigment color (modifi ed from Dove 2000 character 25): (0) brown; (1) 

black; (2) light reddish-brown.

329. Morphology of fi rst node (modifi ed from Dove 2000 character 26): (0) 

reduced; (1) similar to other nodes; (2) both reduced and expanded fi rst nodes.

330. Internode pigmentation (modifi ed from Dove 2000 character 27): (0) ab-

sent; (1) present.
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331. Internode pigmentation (modifi ed from Dove 2000 character 27): (0) stip-

pled; (1) heavily pigmented; (2) uniformly pigmented.

332. True down pigmentation (modifi ed from Dove 2000 character 30): (0) ab-

sent; (1) present.

333. True down pigmentation (modifi ed from Dove 2000 character 30): (0) 

proximal; (1) present throughout.

334. True down nodes (modifi ed from Dove 2000 character 31): (0) node indis-

tinct, not visible (1) distinct, visible.

335. True down nodes (modifi ed from Dove 2000 character 31): (0) fl ared; (1) 

normal; (2) both fl ared and normal.

336. True down pigment shape (modifi ed from Dove 2000 character 32): (0) 

long and constricted; (1) diamond shaped; (2) short and constricted; (3) round; (4) 

diff use.

337. True down pigmented like contour down (modifi ed from Dove 2000 char-

acter 33): (0) no; (1) yes.

338. True down pigmented like afterfeather down (modifi ed from Dove 2000 

character 34): (0) no; (1) yes.

339. Afterfeather pigmentation (modifi ed from Dove 2000 character 35): (0) 

absent; (1) present.

340. Afterfeather pigmentation (modifi ed from Dove 2000 character 35): (0) 

proximal; (1) throughout; (2) distal.

341. Afterfeather down pigmented like contour feather down (modifi ed from 

Dove 2000 character 36): (0) no; (1) yes.

342. Villi (modifi ed from Dove 2000 character 37): (0) absent; (1) present.

343. Distal prongs (modifi ed from Dove 2000 character 38): (0) absent; (1) pre-

sent.

344. Distal prong morphology (modifi ed from Dove 2000 character 38): (0) 

unequal length; (2) equal length.

DNA sequence data

(see Appendix 5 for Genbank accession numbers)

345. – 1487. cytb

1488. – 2528. ND2

2529. – 4343. ND5

4344. – 4865. ND6

4866. – 6416. CO1

6417. – 9287. RAG1

9288. – 10331. 12S

10332. – 11945. 16S
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Rejected characters

Th e following characters from the dataset of Chandler (1990) were rejected due to 

intraspecies variability: 15, 32, 48, 55, 72, 73, 77, 78; or because they were parsimony 

uninformative (i.e., they did not vary among taxa examined): 27, 31, 34, 45, 54, 56, 

57, 66, 68, 76.

Th e following characters of Dove (2000) were not included the matrix because 

they did not vary in any taxa examined in this study: 9, 10, 28, 29. Several characters 

of Dove (2000) were split into two separate characters following the philosophy of 

character independence with respect to absence of character states outlined by Hawk-

ins et al. (1997). 

All the characters of Strauch (1985) and Chandler (1990) were rescored for this 

analysis using multiple specimens (see Appendix 1,comparative material). Many of the 

characters of Strauch (1985) and Chandler (1990) were modifi ed to describe variabil-

ity not originally noted by those authors (see notations in character list).

Although all characters from Hudson et al. (1969) were not rescored, scorings for 

Uria aalge, Alle alle, Fratercula corniculata, Cepphus columba, Aethia psittacula, and 

Synthliboramphus antiquus were confi rmed through dissection of preserved specimens 

(see comparative material for specimen #’s).
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Appendix 6. Geologic setting

Mancallinae material described herein comes from four Miocene and Pliocene aged 

marine deposits (Domning and Deméré 1984; Ingle 1979; Wagner et al. 2001). Con-

gruent with the habitat of extant alcids (del Hoyo et al 1996), three of these deposits 

(San Mateo Formation, Niguel Formation, San Diego Formation) are interpreted as 

the result of shallow to moderate depth marine facies (Vedder 1960; Kern and Wican-

der 1974; Vedder 1972; Ingle 1979; Wagner et al. 2001) associated with cold-water 

upwelling ocean systems. Th e upper siltstone facies of the Capistrano Formation, from 

which Mancallinae fossils have been recovered, contains transported remains of neritic 

mollusks and microfossils that are mixed with the remains of bathyal species (Kern and 

Wicander 1974), suggesting a shallow water origin for Mancallinae fossils from the 

Capistrano Formation. As with other vertebrate fossil assemblages from nutrient-rich 

cold-water systems (e.g., Pliocene Yorktown Formation assemblage; Ray 1987; Ray 

and Bohaska 2001), a diverse assemblage of vertebrates including marine mammals 

and seabirds are documented from marine deposits such as the Pliocene San Diego 

formation in southern California (Barnes et al. 1981).

San Mateo Formation: Th e San Mateo Formation is composed of sandstones, 

siltstones, and conglomerates that interfi nger with the latest Miocene and earliest Plio-

cene aged member of the Capistrano Formation (Tan and Kennedy 1996), and is 

interpreted as the result of shallow marine deposition (Vedder 1972). Th e San Mateo 

Formation is exposed in natural and quarry exposures near Lawrence Canyon in San 

Diego County, California, and has yielded two distinct vertebrate assemblages includ-

ing sharks, fi sh, birds, and marine and terrestrial mammals (Barnes et al. 1981; Domn-

ing and Deméré 1984; Howard 1982).

Th e vertebrate assemblages of the San Mateo Fm. were discussed by Barnes et al. 

(1981), who designated the lower assemblage the San Luis Rey River Local Fauna 

(SLRRLF), and the upper assemblage the Lawrence Canyon Local Fauna (LCLF). 

Based on marine vertebrates and terrestrial mammals, the age of the younger LCLF 

has been proposed to be latest Miocene or earliest Pliocene (~5.0 Ma), and correlative 

with the Late Hemphillian North American Land Mammal Age (NALMA; Domn-

ing and Deméré 1984). Mancallinae fossils, including the humerus (SDSNH 24584) 

referred to M. howardi, have been recovered from the older SLRRLF. Age estimates 

for the SLRRLF based upon terrestrial mammal and marine bird fossils range from 

approximately 6.7-10.0 Ma (i.e., Late Miocene or Turtonian equivalent; Barnes et al. 

1981, Domning and Deméré 1984).

Capistrano Formation: Th e Capistrano Fm. is composed of sandstones and silt-

stones that have been correlated with upper portions of the San Mateo Fm. in north-

ern San Diego County (Elliot 1975; Domning and Deméré 1984), and interpreted 

as the result of marine deep-sea fan deposition on the basis of microfaunal analysis 

and abundant turbidites (Ingle 1979; Vedder 1972). Th e Capistrano Fm. spans the 
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Late Miocene-Early Pliocene boundary (Deméré and Berta 2005), and has accordingly 

been subdivided into upper and lower units. Th e age of the lower unit is estimated 

at 5.6-6.4 Ma (i.e., Late Miocene or Late Messinian; Barron 1986). Although no re-

fi ned estimates are known for the uppermost siltstone unit from which the holotype 

of Miomancalla howardi was recovered, microfaunal analysis of the Capistrano Fm. 

has identifi ed diatoms with ages as young as 4.9Ma (Early Pliocene or Early Zanclian; 

Deméré and Berta 2005).

Niguel Formation: Th e Niguel Formation is composed of a mixed sequence of ma-

rine and non-marine siltstones, sandstones, and conglomerates (Ingle 1979). Microfau-

nal and molluscan analysis indicates deposition at relatively shallow depth (i.e., <200m; 

Vedder 1960) during the Late Pliocene and Early Pleistocene (Late Piacenzian-Early 

Calabrian; Vedder 1960; Ingle 1979), with sea-surface temperatures similar to those 

off shore southern California today (i.e., nutrient rich cold water system; Ingle 1979).

San Diego Formation: Th e San Diego Formation predominantly consists of Plio-

cene and Pleistocene marine sandstones with minor amounts of conglomerates and 

claystones, which are, interpreted as shore-face and shallow depth shelf facies deposits 

(Deméré 1983; Wagner et al. 2001). Based upon microfaunal analysis and correla-

tion with mammalian and molluscan assemblages of known age, the age of San Diego 

Fm. sediments are estimated to range from 3.6-1.5Ma (i.e., Middle Pliocene to Early 

Pleistocene; Piacenzian-Early Calabrian; Wagner et al. 2001). Th e San Diego Fm. was 

divided into 7 stratigraphic sub-units by Wagner et al. (2001). Mancalla fossils occur 

throughout the San Diego Fm. (T. Deméré pers. comm.), Paleomagnetic analysis in-

dicates that sub-unit two can be correlated with the Gilbert Chron C2Ar and Gauss 

Chron C2An.3n boundary, which has been assigned an age of 3.6Ma (Wagner et al. 

2001). Th e distribution of Mancalla species with respect to sub-units within the San 

Diego Fm. has not been evaluated.




