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Short Communication

Abstract

The endangered Galápagos sea lion (Zalophus wollebaeki) inhabits the Galápa-
gos Islands off the coast of Ecuador. We present a complete mitochondrial genome 
(16 465 bp) of a female paratype from the collections of the Natural History Museum 
Oslo, Norway, assembled from next-generation sequencing reads. It contains all ca-
nonical protein-coding, rRNA, tRNA genes, and the D-loop region. Sequence similarity 
is 99.93% to a previously published conspecific mitogenome sequence and 99.37% to 
the mitogenome sequence of the sister species Z. californianus. Sequence similarity of 
the D-loop region of the Z. wollebaeki paratype mitogenome is >99%, while the sequence 
difference to the Z. californianus sequences exceeds 2.5%. The paratype mitogenome 
sequence supports the taxonomic status of Z. wollebaeki as a separate species.

Key words: integrative taxonomy, mitogenome, museomics, type sequencing, unique 
species

Introduction

Intrinsic to the fields of taxonomy and systematics is diagnosability. By conven-
tion, the name and description of any new species is unambiguously linked to the 
original name-bearing type specimen (types). Species identification of organisms 
is dependent on these specimens’ morphological and molecular attributes. While 
DNA sequencing and identification is increasingly used in modern biodiversity re-
search, new challenges regarding taxonomic diagnosability have arisen because 
molecular data is infrequently available for type specimens. DNA sequencing of 
name-bearing type specimens is, thus, of particular importance for taxonomy as 
it enables explicit assignment of extant populations to known types (e.g., Renner 
2016). The increasing number of reports clarifying evolutionary taxonomic and 
systematics issues exemplifies the importance and utility of type specimen se-
quencing (e.g., Kehlmaier et al. 2019; de Abreu-Jr et al. 2020; Zhang et al. 2020).

Here, we present a complete mitochondrial genome of the Galápagos sea lion 
(Zalophus wollebaeki Sivertsen, 1953) female paratype, collected in 1925 by Alf 
Wollebæk from Floreana Island in the Galápagos Archipelago off the coast of 
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Ecuador. Primarily found in the Galápagos Islands archipelago, Z. wollebaeki of-
ten congregates in small groups on Isla de la Plata off mainland Ecuador (Melin 
et al. 2018). Considered Endangered by the International Union for Conservation 
of Nature (IUCN) (Trillmich 2015), the species has been negatively affected by an-
thropogenic pressures such as introduced diseases and the increasing frequen-
cy of El Niño events linked to climate change (Melin et al. 2018; Krüger et al. 2021; 
Páez-Rosas et al. 2021). In 2018, a limited population size of 17 000–24 000 
individuals was reported after a decline of 23.8% in 2015, a year with an El Niño 
event (Páez-Rosas et al. 2021). As the number and intensity of El Niño events 
increases, Z. wollebaeki is also facing decreasing pup abundance, further impact-
ing the species’ survivability and conservation status (Páez-Rosas et al. 2021).

The taxonomy of the genus Zalophus, including the three species 
Z. japonicus (Peters, 1866) Z. californianus (Lesson, 1828, as cited in Ellerman 
and Morrison-Scott 1966) and Z. wollebaeki, has been contentious. Zalophus 
wollebaeki was initially recognized as a new species (Sivertsen 1953), mor-
phologically, but was later reconsidered to be a subspecies of Z. californianus 
(Scheffer 1958). More recently accumulated molecular evidence has suggest-
ed that Z. wollebaeki is a separate species (Wolf et al. 2007, 2008; Schramm 
et al. 2009; Berta and Churchill 2012; Krüger et al. 2021). When compar-
ing mitochondrial D-loop and cytochrome B sequences, Z. californianus and 
Z. wollebaeki were found to be reciprocally monophyletic, and 25 microsatellite 
loci further revealed numerous private alleles (Wolf et al. 2007). Although, a 
recent study (Hassanin et al. 2021) reported an uncorrected pairwise distance 
between Z. californianus and Z. wollebaeki mitogenomes of only 0.5%, suggest-
ing that they are, in fact, the same species; despite this low percent difference, 
they ultimately upheld the separate species taxonomy and instead suggested 
an adjusted divergence time between the two species to be 0.3–0.2 million 
years (Hassanin et al. 2021). Originally considered morphologically distinct 
(Sivertsen 1953), molecular assessment of a Z. wollebaeki type specimen can 
therefore provide a direct link to the initial taxonomic description, while also 
clarifying evolutionary relationships within Zalophus.

Material and methods

A female paratype, collected in 1925 by Alf Wollebæk from Floreana Island (Nat-
ural History Museum of Oslo, Norway, voucher number NHMO-30317) was used 
for this study. Interestingly, the given type series collection location differs among 
the original catalog record (“Chatham/San Cristóbol”), Sivertsen's (1953) holo-
type description (“Floreana/Sancta Maria”), and the Wiig and Bachmann (2013) 
publication (“Isla San Cristóbol”) for this specimen. Here, we specify Floreana/
Santa Maria Island in corroboration with other specimen collection locations and 
dates from the same expedition (Wollebæk 1934) that specify “Santa Maria”.

Total genomic DNA was extracted from a left front flipper skin biopsy 
(257 mg) using the QIAamp DNA Micro Kit (Qiagen, Germany) according to 
the manufacturer’s instructions. Remaining tissue and DNA extract are stored 
in the scientific collections of the Natural History Museum, University of Oslo, 
Norway (voucher number NHMO-DMA-30317/6-D). Extracted DNA (2.4 μg) 
was submitted for custom sequencing (Illumina NovaSeq 2×150 bp) at the 
Norwegian Sequencing Centre (https://www.sequencing.uio.no).

https://www.sequencing.uio.no
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The obtained 26 164 466 raw reads (SRA number PRJNA805083) were 
adapter-trimmed and quality filtered using AdapterRemoval2 (Schubert et al. 
2016), with a total of 23 297 925 trimmed and merged reads de novo assem-
bled with SPAdes v. 3.13.1 (Bankevich et al. 2012). An initial mitochondrial se-
quence assembly using MITObim v. 1.9.1 (Hahn et al. 2013), with a Z. wollebaeki 
D-loop sequence (GenBank accession number AM422173.1) as a bait, yielded 
a 6042 bp contig. The final mitogenome sequence was obtained by blasting the 
MITObim sequence against the 257 673 SPAdes-generated scaffolds >500 bp 
in length. The final mitochondrial genome sequence (GenBank accession num-
ber OM636180) was annotated using MITOS2 (Donath et al. 2019) alongside 
other published Otariidae mitogenomes.

Excluding the D-loop region, the Z. wollebaeki paratype mitogenome was 
aligned to 13 other otariid species [including the previously sequenced Z. wol-
lebaeki specimen (Hassanin et al. 2021)] and three phocid outgroup species 
using MUSCLE on the EMBL-EBI server (Kanz et al. 2005) (https://www.ebi.
ac.uk/Tools/msa/muscle/).

The maximum likelihood analysis was run on the ATGC Montpellier Bioinfor-
matics platform (http://www.atgc-montpellier.fr) using PhyML (Guindon et al. 
2010) under the GTR model and the Akaike information criterion.

Results and discussion

The mitogenome of the Z. wollebaeki paratype was assembled with an average 
coverage of 36.2X. It is 16 465 bp long and includes all canonical protein-cod-
ing sequences, rRNAs, tRNAs, and the D-loop region. Sequence similarity to 
a previously reported Z. wollebaeki (SRR4431565) mitogenome (Hassanin et 
al. 2021) was 99.93% (12 nucleotide substitutions) and 99.37% to the sister 
species Z. californianus. Accordingly, a maximum likelihood analysis placed 
the Z. wollebaeki paratype sequence in a clade consisting of Z. wollebaeki, 
Z. californianus, and Z. japonicus (Fig. 1), confirming the authenticity of the 
paratype sequence.

Comparison with previously published D-loop sequences of Z. wollebaeki 
(Wolf et al. 2007, 2008) revealed a new haplotype that is differentiated from the 
other 36 haplotypes with one C→T transition (position 15 610). Authenticity of 
the substitution was confirmed with all 37 reads covering the region sharing the 
T nucleotide, indicating that erroneous incorporation due to DNA damage can 
be excluded. The new haplotype is most similar to haplotype Zw_H_10, one of 
the most common haplotypes reported for Z. wollebaeki (Wolf et al. 2008). The 
sequence similarity of the D-loop region of the Z. wollebaeki paratype mitog-
enome is >99%, whereas sequence differences exceed 2.5% when compared 
to the 12 Z. californianus sequences >600 bp that are listed in GenBank (Wolf 
et al. 2007). This indicates the Z. wollebaeki paratype mitogenome sequence 
matches well with all nucleotide sequence data reported for more recently col-
lected samples of the species.

The final assembly of the Z. wollebaeki paratype mitogenome sequence in-
cluded 5152 raw reads, which is 0.022% of the adapter-trimmed and quality 
filtered Illumina readpool. This seemingly low proportion is in the same order 
of magnitude as observed in other studies. For example, for total DNA extract-
ed from mouse embryonic fibroblasts Quispe-Tintaya et al. (2013) reported 

http://www.ncbi.nlm.nih.gov/nuccore/AM422173.1
http://www.ncbi.nlm.nih.gov/nuccore/OM636180
https://www.ebi.ac.uk/Tools/msa/muscle/
https://www.ebi.ac.uk/Tools/msa/muscle/
http://www.atgc-montpellier.fr
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a proportion of 0.1% mitochondrial DNA reads, while Anmarkrud and Lifjeld 
(2017) found 0.03–0.18% mapping mitochondrial DNA reads for historical DNA 
extracted from museum specimens of extinct birds. The estimated proportion 
of 0.022% mitochondrial reads is much less than the frequently used rule of 
thumb stating that mitochondrial DNA represents ~1% of a total DNA extract 
of mammals. However, the proportion of mitochondrial reads in a next-genera-
tion sequencing readpool depends on many parameters such as the extraction 
protocol, the sequencing methodology, and DNA quality or contamination from 
other sources. Museum samples are frequently contaminated with external 
DNA of human origin. Therefore, a control mapping of the adapter-trimmed and 
quality filtered Illumina readpool to a human mitochondrial genome was con-
ducted. The very low number of 1031 mapping reads indicated that contami-
nation with human DNA is a minor issue, however, this does not mean that the 
overall sample contamination from external sources is low.

Overall, the complete mitochondrial genome sequence and newly identified 
haplotype represent valuable genetic references in support of a species dis-
tinction between Z. californianus and Z. wollebaeki using a museum paratype 
specimen, which may also be constructive for conservation efforts geared to-
ward this charismatic and unique species, and its habitat. With evolutionary 
relationships within Zalophus clarified, genetic assignment of extant popula-
tions can now be made more accurately and readily. Furthermore, having an 
unambiguous connection between the species’ genetic information and the 
original taxonomic description of Z. wollebaeki and paratype specimen, fulfills 
recent recommendations for incorporating DNA-based species identifications 
and diagnoses into the various Codes of Nomenclature.

Figure 1. Maximum likelihood tree of several otariid species. Relationships are depicted among the Z. wollebaeki para-
type mitogenome (bolded and blue), 13 otariid species (incl. the previously described Z. wollebaeki mitogenome se-
quence, GenBank accession number AM422173.1), and three phocid outgroup species. The scale indicates genetic dis-
tance. Nodes with 100% bootstrap support (1000 replicates) are depicted in green, with the remaining nodes’ respective 
bootstrap values indicated to the left.
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